

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2811007/publications.pdf Version: 2024-02-01

WELL

#	Article	IF	CITATIONS
1	Paper-based dual-mode liquid manipulation system: Oil/water separation and time-lapse droplet switch. Chemical Engineering Journal, 2022, 427, 131606.	12.7	12
2	Carboxymethylated nanocellulose-based gel polymer electrolyte with a high lithium ion transfer number for flexible lithium-ion batteries application. Chemical Engineering Journal, 2022, 428, 132604.	12.7	38
3	Design of antibacterial cellulose nanofibril film by the incorporation of guanidine-attached lignin nanoparticles. Cellulose, 2022, 29, 3439-3451.	4.9	5
4	Design of high performance fluorescent probe-based test strips for hydrogensulfite determination by chemical grafting. Talanta, 2022, 243, 123334.	5.5	2
5	Facile design of novel nanocellulose-based gel polymer electrolyte for lithium-ion batteries application. Chemical Engineering Journal, 2022, 445, 136568.	12.7	10
6	Modulation of superhydrophobicity and self-binding strength of cellulose ester-based coating by changing the degree of substitution. Journal of Materials Science, 2021, 56, 5924-5935.	3.7	6
7	Developing bagasse towards superhydrophobic coatings. Cellulose, 2021, 28, 3617-3630.	4.9	16
8	Green approach to facilely design hydrophobic aerogel directly from bagasse. Industrial Crops and Products, 2021, 172, 113957.	5.2	27
9	Reactive Water Vapor Barrier Coatings Derived from Cellulose Undecenoyl Esters for Paper Packaging. Coatings, 2020, 10, 1032.	2.6	9
10	Improving moisture barrier properties of paper sheets by cellulose stearoyl ester-based coatings. Carbohydrate Polymers, 2020, 235, 115924.	10.2	23
11	Reactive superhydrophobic paper from one-step spray-coating of cellulose-based derivative. Applied Surface Science, 2019, 497, 143816.	6.1	49
12	Facile preparation of reactive hydrophobic cellulose nanofibril film for reducing water vapor permeability (WVP) in packaging applications. Cellulose, 2019, 26, 3271-3284.	4.9	76
13	Stimuli-responsive cellulose paper materials. Carbohydrate Polymers, 2019, 210, 350-363.	10.2	55
14	Superhydrophobic surfaces generated by one-pot spray-coating of chitosan-based nanoparticles. Carbohydrate Polymers, 2018, 195, 39-44.	10.2	40
15	Multifunctional chiral nematic cellulose nanocrystals/glycerol structural colored nanocomposites for intelligent responsive films, photonic inks and iridescent coatings. Journal of Materials Chemistry C, 2018, 6, 5391-5400.	5.5	103
16	Surface attachment of protonated polyimidazolium monolayer on titanate nanotubes as a novel proton conductor. Journal of Materials Science, 2018, 53, 15784-15794.	3.7	4
17	Toward Anhydrous Proton Conductivity Based on Imidazole Functionalized Mesoporous Silica/Nafion Composite Membranes. Electrochimica Acta, 2015, 160, 185-194.	5.2	54
18	Decorating titanate nanotubes with protonated 1,2,4-triazole moieties for anhydrous proton conduction. Journal of Colloid and Interface Science, 2014, 432, 26-30.	9.4	8

#	Article	IF	CITATIONS
19	Enhanced proton conductivity of polymer electrolyte membrane doped with titanate nanotubes. Colloid and Polymer Science, 2010, 288, 1369-1374.	2.1	16