Aaron P Mitchell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2810737/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Systematic Genetic Interaction Analysis Identifies a Transcription Factor Circuit Required for Oropharyngeal Candidiasis. MBio, 2022, 13, e0344721.	4.1	11
2	Serum bridging molecules drive candidal invasion of human but not mouse endothelial cells. PLoS Pathogens, 2022, 18, e1010681.	4.7	3
3	Use of the Iron-Responsive <i>RBT5</i> Promoter for Regulated Expression in Candida albicans. MSphere, 2022, 7, .	2.9	2
4	Diminished Expression Alleles for Analysis of Virulence Traits and Genetic Interactions in. Methods in Molecular Biology, 2021, 2260, 1-13.	0.9	0
5	Targeted Genetic Changes in <i>Candida albicans</i> Using Transient CRISPR as9 Expression. Current Protocols, 2021, 1, e19.	2.9	4
6	Activation of EphA2-EGFR signaling in oral epithelial cells by Candida albicans virulence factors. PLoS Pathogens, 2021, 17, e1009221.	4.7	45
7	Determining Aspergillus fumigatus transcription factor expression and function during invasion of the mammalian lung. PLoS Pathogens, 2021, 17, e1009235.	4.7	28
8	Environmentally contingent control of Candida albicans cell wall integrity by transcriptional regulator Cup9. Genetics, 2021, 218, .	2.9	2
9	Intravital Imaging of Candida albicans Identifies Differential <i>In Vitro</i> and <i>In Vivo</i> Filamentation Phenotypes for Transcription Factor Deletion Mutants. MSphere, 2021, 6, e0043621.	2.9	21
10	Coordination of fungal biofilm development by extracellular vesicle cargo. Nature Communications, 2021, 12, 6235.	12.8	42
11	Clarifying and Imaging Candida albicans Biofilms. Journal of Visualized Experiments, 2020, , .	0.3	3
12	Roles of Candida albicans Mig1 and Mig2 in glucose repression, pathogenicity traits, and SNF1 essentiality. PLoS Genetics, 2020, 16, e1008582.	3.5	38
13	Candida albicans Culture, Cell Harvesting, and Total RNA Extraction. Bio-protocol, 2020, 10, e3803.	0.4	7
14	Title is missing!. , 2020, 16, e1008582.		0
15	Title is missing!. , 2020, 16, e1008582.		0
16	Title is missing!. , 2020, 16, e1008582.		0
17	Title is missing!. , 2020, 16, e1008582.		0
18	Title is missing!. , 2020, 16, e1008582.		0

2

#	Article	IF	CITATIONS
19	Title is missing!. , 2020, 16, e1008582.		Ο
20	Genome Sequence for Candida albicans Clinical Oral Isolate 529L. Microbiology Resource Announcements, 2019, 8, .	0.6	13
21	mSphere of Influence: the View from the Microbiologists of the Future. MSphere, 2019, 4, .	2.9	0
22	Circuit diversification in a biofilm regulatory network. PLoS Pathogens, 2019, 15, e1007787.	4.7	79
23	Candida albicans Morphogenesis Programs Control the Balance between Gut Commensalism and Invasive Infection. Cell Host and Microbe, 2019, 25, 432-443.e6.	11.0	154
24	Conservation and Divergence in the <i>Candida</i> Species Biofilm Matrix Mannan-Glucan Complex Structure, Function, and Genetic Control. MBio, 2018, 9, .	4.1	52
25	Candida albicans biofilm–induced vesicles confer drug resistance through matrix biogenesis. PLoS Biology, 2018, 16, e2006872.	5.6	173
26	Impact of surface topography on biofilm formation by Candida albicans. PLoS ONE, 2018, 13, e0197925.	2.5	32
27	Functional convergence of <i>gliP</i> and <i>aspf1</i> in <i>Aspergillus fumigatus</i> pathogenicity. Virulence, 2018, 9, 1062-1073.	4.4	14
28	Rapid Gene Concatenation for Genetic Rescue of Multigene Mutants in Candida albicans. MSphere, 2018, 3, .	2.9	11
29	Infection-Associated Gene Expression—The Pathogen Perspective. , 2017, , 253-269.		1
30	A novel streptococcal cell–cell communication peptide promotes pneumococcal virulence and biofilm formation. Molecular Microbiology, 2017, 105, 554-571.	2.5	51
31	Marker Recycling in Candida albicans through CRISPR-Cas9-Induced Marker Excision. MSphere, 2017, 2, .	2.9	43
32	Fungal Biofilms: Inside Out. Microbiology Spectrum, 2017, 5, .	3.0	25
33	Fungal Biofilms: Inside Out. , 2017, , 873-886.		6
34	Location, location, location: Use of CRISPR-Cas9 for genome editing in human pathogenic fungi. PLoS Pathogens, 2017, 13, e1006209.	4.7	17
35	Promiscuous signaling by a regulatory system unique to the pandemic PMEN1 pneumococcal lineage. PLoS Pathogens, 2017, 13, e1006339.	4.7	38
36	Bypass of Candida albicans Filamentation/Biofilm Regulators through Diminished Expression of Protein Kinase Cak1. PLoS Genetics, 2016, 12, e1006487.	3.5	39

#	Article	IF	CITATIONS
37	Fungus produces a toxic surprise. Nature, 2016, 532, 41-42.	27.8	9
38	Candida albicans Gene Deletion with a Transient CRISPR-Cas9 System. MSphere, 2016, 1, .	2.9	174
39	Gene Expression Profiling of Infecting Microbes Using a Digital Bar-coding Platform. Journal of Visualized Experiments, 2016, , e53460.	0.3	1
40	Sequence-directed nucleosome-depletion is sufficient to activate transcription from a yeast core promoter inÂvivo. Biochemical and Biophysical Research Communications, 2016, 476, 57-62.	2.1	5
41	Pathogen Gene Expression Profiling During Infection Using a Nanostring nCounter Platform. Methods in Molecular Biology, 2016, 1361, 57-65.	0.9	26
42	Coordination of Candida albicans Invasion and Infection Functions by Phosphoglycerol Phosphatase Rhr2. Pathogens, 2015, 4, 573-589.	2.8	21
43	<i>Candida albicans</i> Biofilm Development and Its Genetic Control. Microbiology Spectrum, 2015, 3, .	3.0	71
44	The New Shape of EC. Eukaryotic Cell, 2015, 14, 1151-1152.	3.4	0
45	Sudden motility reversal indicates sensing of magnetic field gradients in <i>Magnetospirillum magneticum</i> AMB-1 strain. ISME Journal, 2015, 9, 1399-1409.	9.8	20
46	Activation and Alliance of Regulatory Pathways in C. albicans during Mammalian Infection. PLoS Biology, 2015, 13, e1002076.	5.6	97
47	New signaling pathways govern the host response to <i>C. albicans</i> infection in various niches. Genome Research, 2015, 25, 679-689.	5.5	82
48	Divergent Targets of Aspergillus fumigatus AcuK and AcuM Transcription Factors during Growth <i>In Vitro</i> versus Invasive Disease. Infection and Immunity, 2015, 83, 923-933.	2.2	29
49	Community participation in biofilm matrix assembly and function. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4092-4097.	7.1	139
50	A Candida albicans Strain Expressing Mammalian Interleukin-17A Results in Early Control of Fungal Growth during Disseminated Infection. Infection and Immunity, 2015, 83, 3684-3692.	2.2	4
51	ChIP-seq and In Vivo Transcriptome Analyses of the Aspergillus fumigatus SREBP SrbA Reveals a New Regulator of the Fungal Hypoxia Response and Virulence. PLoS Pathogens, 2014, 10, e1004487.	4.7	171
52	Novel Entries in a Fungal Biofilm Matrix Encyclopedia. MBio, 2014, 5, e01333-14.	4.1	234
53	Fungal Biofilms, Drug Resistance, and Recurrent Infection. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a019729-a019729.	6.2	196
54	The <i>Cryptococcus neoformans</i> Rim101 Transcription Factor Directly Regulates Genes Required for Adaptation to the Host. Molecular and Cellular Biology, 2014, 34, 673-684.	2.3	73

#	Article	IF	CITATIONS
55	Mutational Analysis of Essential Septins Reveals a Role for Septin-Mediated Signaling in Filamentation. Eukaryotic Cell, 2014, 13, 1403-1410.	3.4	9
56	Disruption of the Transcriptional Regulator Cas5 Results in Enhanced Killing of Candida albicans by Fluconazole. Antimicrobial Agents and Chemotherapy, 2014, 58, 6807-6818.	3.2	45
57	Role of Retrograde Trafficking in Stress Response, Host Cell Interactions, and Virulence of Candida albicans. Eukaryotic Cell, 2014, 13, 279-287.	3.4	32
58	The Fungal Pathogen Candida albicans. , 2014, , 751-768.		0
59	Profiling of Candida albicans Gene Expression During Intra-abdominal Candidiasis Identifies Biologic Processes Involved in Pathogenesis. Journal of Infectious Diseases, 2013, 208, 1529-1537.	4.0	62
60	Regulatory Role of Glycerol in Candida albicans Biofilm Formation. MBio, 2013, 4, e00637-12.	4.1	77
61	Aspergillus Galactosaminogalactan Mediates Adherence to Host Constituents and Conceals Hyphal β-Glucan from the Immune System. PLoS Pathogens, 2013, 9, e1003575.	4.7	256
62	Bcr1 Functions Downstream of Ssd1 To Mediate Antimicrobial Peptide Resistance in Candida albicans. Eukaryotic Cell, 2013, 12, 411-419.	3.4	19
63	Glycerophosphocholine Utilization by Candida albicans. Journal of Biological Chemistry, 2013, 288, 33939-33952.	3.4	35
64	A Competitive Infection Model of Hematogenously Disseminated Candidiasis in Mice Redefines the Role of Candida albicans IRS4 in Pathogenesis. Infection and Immunity, 2013, 81, 1430-1438.	2.2	9
65	A Candida Biofilm-Induced Pathway for Matrix Glucan Delivery: Implications for Drug Resistance. PLoS Pathogens, 2012, 8, e1002848.	4.7	240
66	Portrait of Candida albicans Adherence Regulators. PLoS Pathogens, 2012, 8, e1002525.	4.7	201
67	Fungal Biofilms. PLoS Pathogens, 2012, 8, e1002585.	4.7	347
68	Divergent Targets of Candida albicans Biofilm Regulator Bcr1 <i>In Vitro</i> and <i>In Vivo</i> . Eukaryotic Cell, 2012, 11, 896-904.	3.4	103
69	Rapid Redistribution of Phosphatidylinositol-(4,5)-Bisphosphate and Septins during the Candida albicans Response to Caspofungin. Antimicrobial Agents and Chemotherapy, 2012, 56, 4614-4624.	3.2	30
70	Functional control of the <i><scp>C</scp>andida albicans</i> cell wall by catalytic protein kinase <scp>A</scp> subunit <scp>Tpk</scp> 1. Molecular Microbiology, 2012, 86, 284-302.	2.5	31
71	cis - and trans -Acting Localization Determinants of pH Response Regulator Rim13 in Saccharomyces cerevisiae. Eukaryotic Cell, 2012, 11, 1201-1209.	3.4	10
72	Mini-blaster-Mediated Targeted Gene Disruption and Marker Complementation in Candida albicans. Methods in Molecular Biology, 2012, 845, 19-39.	0.9	7

#	Article	IF	CITATIONS
73	The plant defensin RsAFP2 induces cell wall stress, septin mislocalization and accumulation of ceramides in <i>Candida albicans</i> . Molecular Microbiology, 2012, 84, 166-180.	2.5	123
74	Fungal Morphogenesis: In Hot Pursuit. Current Biology, 2012, 22, R225-R227.	3.9	2
75	Candida albicans Adds More Weight to Iron Regulation. Cell Host and Microbe, 2011, 10, 93-94.	11.0	14
76	Mucosal biofilms of Candida albicans. Current Opinion in Microbiology, 2011, 14, 380-385.	5.1	172
77	Cell wall integrity is linked to mitochondria and phospholipid homeostasis in <i>Candida albicans</i> through the activity of the postâ€ŧranscriptional regulator Ccr4â€Pop2. Molecular Microbiology, 2011, 79, 968-989.	2.5	115
78	Genetic control of Candida albicans biofilm development. Nature Reviews Microbiology, 2011, 9, 109-118.	28.6	509
79	Zap1 Control of Cell-Cell Signaling in Candida albicans Biofilms. Eukaryotic Cell, 2011, 10, 1448-1454.	3.4	60
80	Interaction between the Candida albicans High-Osmolarity Glycerol (HOG) Pathway and the Response to Human β-Defensins 2 and 3. Eukaryotic Cell, 2011, 10, 272-275.	3.4	40
81	Role of Bcr1-Activated Genes Hwp1 and Hyr1 in Candida Albicans Oral Mucosal Biofilms and Neutrophil Evasion. PLoS ONE, 2011, 6, e16218.	2.5	89
82	Role of filamentation in Galleria mellonella killing by Candida albicans. Microbes and Infection, 2010, 12, 488-496.	1.9	99
83	<i>Candida albicans</i> Hyr1p Confers Resistance to Neutrophil Killing and Is a Potential Vaccine Target. Journal of Infectious Diseases, 2010, 201, 1718-1728.	4.0	112
84	Intervention of Bro1 in pH-Responsive Rim20 Localization in Saccharomyces cerevisiae. Eukaryotic Cell, 2010, 9, 532-538.	3.4	8
85	An Extensive Circuitry for Cell Wall Regulation in Candida albicans. PLoS Pathogens, 2010, 6, e1000752.	4.7	182
86	Contextual Slip and Prediction of Student Performance after Use of an Intelligent Tutor. Lecture Notes in Computer Science, 2010, , 52-63.	1.3	59
87	<i>Candida albicans</i> Cas5, a Regulator of Cell Wall Integrity, Is Required for Virulence in Murine and <i>Toll</i> Mutant Fly Models. Journal of Infectious Diseases, 2009, 200, 152-157.	4.0	43
88	Biofilm Matrix Regulation by Candida albicans Zap1. PLoS Biology, 2009, 7, e1000133.	5.6	286
89	Teach, Then Trust - Elizabeth W. Jones (1939–2008): Mentor to Many. Genetics, 2009, 181, 357-365.	2.9	0
90	Detection of Protein–Protein Interactions Through Vesicle Targeting. Genetics, 2009, 182, 33-39.	2.9	13

6

#	Article	IF	CITATIONS
91	Transcriptional Responses of <i>Candida albicans</i> to Epithelial and Endothelial Cells. Eukaryotic Cell, 2009, 8, 1498-1510.	3.4	54
92	Widespread occurrence of chromosomal aneuploidy following the routine production of <i>Candida albicans</i> mutants. FEMS Yeast Research, 2009, 9, 1070-1077.	2.3	54
93	Large-Scale Gene Disruption Using the UAU1 Cassette. Methods in Molecular Biology, 2009, 499, 175-194.	0.9	50
94	<i>Candida albicans</i> transcription factor Rim101 mediates pathogenic interactions through cell wall functions. Cellular Microbiology, 2008, 10, 2180-2196.	2.1	144
95	Complementary Adhesin Function in C. albicans Biofilm Formation. Current Biology, 2008, 18, 1017-1024.	3.9	293
96	Regulation of the <i>Candida albicans</i> Cell Wall Damage Response by Transcription Factor Sko1 and PAS Kinase Psk1. Molecular Biology of the Cell, 2008, 19, 2741-2751.	2.1	88
97	A VAST staging area for regulatory proteins. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7111-7112.	7.1	12
98	Requirement for Candida albicans Sun41 in Biofilm Formation and Virulence. Eukaryotic Cell, 2007, 6, 2046-2055.	3.4	118
99	Mucosal Tissue Invasion by <i>Candida albicans</i> Is Associated with E-Cadherin Degradation, Mediated by Transcription Factor Rim101p and Protease Sap5p. Infection and Immunity, 2007, 75, 2126-2135.	2.2	181
100	A nucleosome positioned by $\hat{l}\pm 2/Mcm1$ prevents Hap1 activator binding in vivo. Biochemical and Biophysical Research Communications, 2007, 364, 583-588.	2.1	6
101	Candida albicans protein kinase CK2 governs virulence during oropharyngeal candidiasis. Cellular Microbiology, 2007, 9, 233-245.	2.1	50
102	Microbial biofilms: e pluribus unum. Current Biology, 2007, 17, R349-R353.	3.9	50
103	Control of the C. albicans Cell Wall Damage Response by Transcriptional Regulator Cas5. PLoS Pathogens, 2006, 2, e21.	4.7	147
104	How to build a biofilm: a fungal perspective. Current Opinion in Microbiology, 2006, 9, 588-594.	5.1	453
105	Cenetics and genomics of Candida albicans biofilm formation. Cellular Microbiology, 2006, 8, 1382-1391.	2.1	237
106	Alcohol Dehydrogenase Restricts the Ability of the Pathogen Candida albicans To Form a Biofilm on Catheter Surfaces through an Ethanol-Based Mechanism. Infection and Immunity, 2006, 74, 3804-3816.	2.2	135
107	Function of Candida albicans Adhesin Hwp1 in Biofilm Formation. Eukaryotic Cell, 2006, 5, 1604-1610.	3.4	321
108	Critical Role of Bcr1-Dependent Adhesins in C. albicans Biofilm Formation In Vitro and In Vivo. PLoS Pathogens, 2006, 2, e63.	4.7	443

#	Article	IF	CITATIONS
109	Control of Bro1-Domain Protein Rim20 Localization by External pH, ESCRT Machinery, and the Saccharomyces cerevisiae Rim101 Pathway. Molecular Biology of the Cell, 2006, 17, 1344-1353.	2.1	75
110	Effect of Sequence-Directed Nucleosome Disruption on Cell-Type-Specific Repression by α2/Mcm1 in the Yeast Genome. Eukaryotic Cell, 2006, 5, 1925-1933.	3.4	28
111	Cryptococcal virulence: beyond the usual suspects. Journal of Clinical Investigation, 2006, 116, 1481-1483.	8.2	12
112	Regulation of azole drug susceptibility by Candida albicans protein kinase CK2. Molecular Microbiology, 2005, 56, 559-573.	2.5	51
113	Regulation of Cell-Surface Genes and Biofilm Formation by the C. albicans Transcription Factor Bcr1p. Current Biology, 2005, 15, 1150-1155.	3.9	424
114	Fungal CO2 Sensing: A Breath of Fresh Air. Current Biology, 2005, 15, R934-R936.	3.9	18
115	A Human-Curated Annotation of the Candida albicans Genome. PLoS Genetics, 2005, 1, e1.	3.5	293
116	Relationship of DFG16 to the Rim101p pH Response Pathway in Saccharomyces cerevisiae and Candida albicans. Eukaryotic Cell, 2005, 4, 890-899.	3.4	80
117	Yeast wall protein 1 of Candida albicans. Microbiology (United Kingdom), 2005, 151, 1631-1644.	1.8	123
118	Candida albicans Biofilm-Defective Mutants. Eukaryotic Cell, 2005, 4, 1493-1502.	3.4	160
119	Invasive Phenotype of Candida albicans Affects the Host Proinflammatory Response to Infection. Infection and Immunity, 2005, 73, 4588-4595.	2.2	89
120	Candida albicans Rim13p, a Protease Required for Rim101p Processing at Acidic and Alkaline pHs. Eukaryotic Cell, 2004, 3, 741-751.	3.4	86
121	Multivesicular Body-ESCRT Components Function in pH Response Regulation inSaccharomyces cerevisiaeandCandida albicans. Molecular Biology of the Cell, 2004, 15, 5528-5537.	2.1	155
122	Large-scale gene function analysis in Candida albicans. Trends in Microbiology, 2004, 12, 157-161.	7.7	31
123	Relationship between Candida albicans Virulence during Experimental Hematogenously Disseminated Infection and Endothelial Cell Damage In Vitro. Infection and Immunity, 2004, 72, 598-601.	2.2	98
124	Evidence for a Role of Glycogen Synthase Kinaseâ€3β in Rodent Spermatogenesis. Journal of Andrology, 2003, 24, 332-342.	2.0	33
125	The Transcription Factor Rim101p Governs Ion Tolerance and Cell Differentiation by Direct Repression of the Regulatory Genes NRG1 and SMP1 in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2003, 23, 677-686.	2.3	239
126	Roles of Candida albicans Dfg5p and Dcw1p Cell Surface Proteins in Growth and Hypha Formation. Eukaryotic Cell, 2003, 2, 746-755.	3.4	106

#	Article	IF	CITATIONS
127	Yeast Ume6p repressor permits activator binding but restricts TBP binding at the HOP1 promoter. Nucleic Acids Research, 2003, 31, 3033-3037.	14.5	16
128	Genetic control of chlamydospore formation in Candida albicans. Microbiology (United Kingdom), 2003, 149, 3629-3637.	1.8	78
129	Updated View of Cryptococcus neoformans Mating Type and Virulence. Infection and Immunity, 2003, 71, 4829-4830.	2.2	7
130	Hap1p Photofootprinting as an In Vivo Assay of Repression Mechanism in Saccharomyces cerevisiae. Methods in Enzymology, 2003, 370, 479-487.	1.0	3
131	Repression and Activation Domains of Rme1p Structurally Overlap, but Differ in Genetic Requirements. Molecular Biology of the Cell, 2002, 13, 1709-1721.	2.1	12
132	<i>Candida albicans</i> Mds3p, a Conserved Regulator of pH Responses and Virulence Identified Through Insertional Mutagenesis. Genetics, 2002, 162, 1573-1581.	2.9	189
133	Alkaline Response Genes of Saccharomyces cerevisiaeand Their Relationship to the RIM101 Pathway. Journal of Biological Chemistry, 2001, 276, 1850-1856.	3.4	205
134	A C-terminal Segment with Properties of α-Helix Is Essential for DNA Binding and in Vivo Function of Zinc Finger Protein Rme1p. Journal of Biological Chemistry, 2001, 276, 37680-37685.	3.4	4
135	Yeast PalA/AIP1/Alix Homolog Rim20p Associates with a PEST-Like Region and Is Required for Its Proteolytic Cleavage. Journal of Bacteriology, 2001, 183, 6917-6923.	2.2	113
136	Coupling of Saccharomyces cerevisiae Early Meiotic Gene Expression to DNA Replication Depends Upon RPD3 and SIN3. Genetics, 2001, 157, 545-556.	2.9	33
137	A recyclableCandida albicans URA3 cassette for PCR product-directed gene disruptions. Yeast, 2000, 16, 65-70.	1.7	224
138	An RNA-binding protein homologue that promotes sporulation-specific gene expression inSaccharomyces cerevisiae. Yeast, 2000, 16, 631-639.	1.7	32
139	RIM101 -Dependent and -Independent Pathways Govern pH Responses in Candida albicans. Molecular and Cellular Biology, 2000, 20, 971-978.	2.3	272
140	Shared Roles of Yeast Glycogen Synthase Kinase 3 Family Members in Nitrogen-Responsive Phosphorylation of Meiotic Regulator Ume6p. Molecular and Cellular Biology, 2000, 20, 5447-5453.	2.3	51
141	A Single-Transformation Gene Function Test in DiploidCandida albicans. Journal of Bacteriology, 2000, 182, 5730-5736.	2.2	200
142	Candida albicans RIM101 pH Response Pathway Is Required for Host-Pathogen Interactions. Infection and Immunity, 2000, 68, 5953-5959.	2.2	265
143	Catalytic Roles of Yeast GSK3β/Shaggy Homolog Rim11p in Meiotic Activation. Genetics, 1999, 153, 1145-1152.	2.9	32
144	Rapid Hypothesis Testing with <i>Candida albicans</i> through Gene Disruption with Short Homology Regions. Journal of Bacteriology, 1999, 181, 1868-1874.	2.2	728

#	Article	IF	CITATIONS
145	Dimorphism and virulence in Candida albicans. Current Opinion in Microbiology, 1998, 1, 687-692.	5.1	238
146	New Concepts Regarding the Pathogenesis of Periodontal Disease in HIV Infection. , 1998, 3, 62-75.		70
147	Genomic footprinting of the yeast zinc finger protein Rme1p and its roles in repression of the meiotic activator IME1. Nucleic Acids Research, 1998, 26, 2329-2336.	14.5	26
148	Proteolytic Activation of Rim1p, a Positive Regulator of Yeast Sporulation and Invasive Growth. Genetics, 1997, 145, 63-73.	2.9	192
149	Molecular characterization of the yeast meiotic regulatory geneRIM1. Nucleic Acids Research, 1993, 21, 3789-3797.	14.5	105
150	Three regulatory systems control expression of glutamine synthetase inSaccharomyces cerevisiae at the level of transcription. Molecular Genetics and Genomics, 1989, 217, 370-377.	2.4	40
151	Activation of meiosis and sporulation by repression of the RME1 product in yeast. Nature, 1986, 319, 738-742.	27.8	206
152	THE <i>GLN1</i> LOCUS OF <i>SACCHAROMYCES CEREVISIAE</i> ENCODES GLUTAMINE SYNTHETASE. Genetics, 1985, 111, 243-258.	2.9	37
153	<i>Candida albicans</i> Biofilm Development and Its Genetic Control. , 0, , 99-114.		4
154	Signal Transduction in the Interactions of Fungal Pathogens and Mammalian Hosts. , 0, , 143-162.		2
155	Molecular Basis of Fungal Adherence to Endothelial and Epithelial Cells. , 0, , 187-196.		3
156	Toward a Molecular Understanding of <i>Candida albicans</i> Virulence. , 0, , 305-P1.		10
157	Biofilm Formation in Candida albicans. , 0, , 299-315.		0
158	Postgenomic Strategies for Genetic Analysis: Insight from Saccharomyces cerevisiae and Candida albicans. , 0, , 35-P1.		0
159	Studying Fungal Virulence by Using Genomics. , 0, , 589-P1.		1