Martin Parent

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2810590/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Computational Analysis of Subthalamic Nucleus and Lenticular Fasciculus Activation During Therapeutic Deep Brain Stimulation. Journal of Neurophysiology, 2006, 96, 1569-1580.	1.8	284
2	Exosome secretion is a key pathway for clearance of pathological TDP-43. Brain, 2016, 139, 3187-3201.	7.6	262
3	Organization of the basal ganglia: the importance of axonal collateralization. Trends in Neurosciences, 2000, 23, S20-S27.	8.6	237
4	Maladaptive plasticity of serotonin axon terminals in levodopaâ€induced dyskinesia. Annals of Neurology, 2010, 68, 619-628.	5.3	221
5	Axonal branching pattern of neurons of the subthalamic nucleus in primates. Journal of Comparative Neurology, 2000, 424, 142-152.	1.6	193
6	Aberrant Lipid Metabolism in the Forebrain Niche Suppresses Adult Neural Stem Cell Proliferation in an Animal Model of Alzheimer's Disease. Cell Stem Cell, 2015, 17, 397-411.	11.1	192
7	Neural transplants in patients with Huntington's disease undergo disease-like neuronal degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12483-12488.	7.1	183
8	Two types of projection neurons in the internal pallidum of primates: Singleâ€axon tracing and threeâ€dimensional reconstruction. Journal of Comparative Neurology, 2001, 439, 162-175.	1.6	172
9	Striatal Neurons Expressing D1 and D2 Receptors are Morphologically Distinct and Differently Affected by Dopamine Denervation in Mice. Scientific Reports, 2017, 7, 41432.	3.3	146
10	The pallidofugal motor fiber system in primates. Parkinsonism and Related Disorders, 2004, 10, 203-211.	2.2	117
11	The role of dopamine in huntington's disease. Progress in Brain Research, 2014, 211, 235-254.	1.4	117
12	Single-axon tracing and three-dimensional reconstruction of centre médian-parafascicular thalamic neurons in primates. Journal of Comparative Neurology, 2005, 481, 127-144.	1.6	113
13	Single-axon tracing study of corticostriatal projections arising from primary motor cortex in primates. Journal of Comparative Neurology, 2006, 496, 202-213.	1.6	104
14	The axonal arborization of single nigrostriatal neurons in rats. Brain Research, 1999, 834, 228-232.	2.2	98
15	Holographic Reconstruction of Axonal Pathways in the Human Brain. Neuron, 2019, 104, 1056-1064.e3.	8.1	91
16	Serotonin and dopamine striatal innervation in Parkinson's disease and Huntington's chorea. Parkinsonism and Related Disorders, 2011, 17, 593-598.	2.2	80
17	Distribution of VGLUT3 in Highly Collateralized Axons from the Rat Dorsal Raphe Nucleus as Revealed by Single-Neuron Reconstructions. PLoS ONE, 2014, 9, e87709.	2.5	78
18	Substantia Nigra and Parkinson's Disease: A Brief History of Their Long and Intimate Relationship. Canadian Journal of Neurological Sciences, 2010, 37, 313-319.	0.5	76

MARTIN PARENT

#	Article	IF	CITATIONS
19	Serotonin innervation of basal ganglia in monkeys and humans. Journal of Chemical Neuroanatomy, 2011, 41, 256-265.	2.1	75
20	Lmx1a and Lmx1b regulate mitochondrial functions and survival of adult midbrain dopaminergic neurons. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4387-96.	7.1	75
21	A descending dopamine pathway conserved from basal vertebrates to mammals. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2440-9.	7.1	74
22	Ultrastructural evidence of microglial heterogeneity in Alzheimer's disease amyloid pathology. Journal of Neuroinflammation, 2019, 16, 87.	7.2	73
23	Evidence for Altered Basal Ganglia-Brainstem Connections in Cervical Dystonia. PLoS ONE, 2012, 7, e31654.	2.5	71
24	Acetylcholine innervation of the adult rat thalamus: Distribution and ultrastructural features in dorsolateral geniculate, parafascicular, and reticular thalamic nuclei. Journal of Comparative Neurology, 2008, 511, 678-691.	1.6	59
25	Serotonin innervation of human basal ganglia. European Journal of Neuroscience, 2011, 33, 1519-1532.	2.6	55
26	Single-axon tracing of the corticosubthalamic hyperdirect pathway in primates. Brain Structure and Function, 2018, 223, 3959-3973.	2.3	49
27	Brain 5-HT2A receptors in MPTP monkeys and levodopa-induced dyskinesias. European Journal of Neuroscience, 2011, 33, 1823-1831.	2.6	47
28	Deep Brain Stimulation of the Pedunculopontine Nucleus Area in Parkinson Disease: MRI-Based Anatomoclinical Correlations and Optimal Target. Neurosurgery, 2019, 84, 506-518.	1.1	47
29	The pallidofugal projection system in primates: evidence for neurons branching ipsilaterally and contralaterally to the thalamus and brainstem. Journal of Chemical Neuroanatomy, 1999, 16, 153-165.	2.1	46
30	A re-evaluation of the current model of the basal ganglia. Parkinsonism and Related Disorders, 2001, 7, 193-198.	2.2	42
31	Remodeling of lipid bodies by docosahexaenoic acid in activated microglial cells. Journal of Neuroinflammation, 2016, 13, 116.	7.2	42
32	Internalization of targeted quantum dots by brain capillary endothelial cells inÂvivo. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 731-742.	4.3	41
33	Striatal allografts in patients with Huntington's disease: impact of diminished astrocytes and vascularization on graft viability. Brain, 2013, 136, 433-443.	7.6	38
34	Distribution and morphological characteristics of striatal interneurons expressing calretinin in mice: A comparison with human and nonhuman primates. Journal of Chemical Neuroanatomy, 2014, 59-60, 51-61.	2.1	36
35	The Quebec Parkinson Network: A Researcher-Patient Matching Platform and Multimodal Biorepository. Journal of Parkinson's Disease, 2020, 10, 301-313.	2.8	35
36	Relationship between axonal collateralization and neuronal degeneration in basal ganglia. , 2006, ,		34

85-88.

MARTIN PARENT

#	Article	IF	CITATIONS
37	Ultrastructure of the Serotonin Innervation in the Mammalian Central Nervous System. Handbook of Behavioral Neuroscience, 2010, , 65-101.	0.7	33
38	High Sensitivity Mapping of Cortical Dopamine D2 Receptor Expressing Neurons. Cerebral Cortex, 2019, 29, 3813-3827.	2.9	32
39	Serotonin hyperinnervation of the striatum with high synaptic incidence in parkinsonian monkeys. Brain Structure and Function, 2016, 221, 3675-3691.	2.3	31
40	The microcircuitry of primate subthalamic nucleus. Parkinsonism and Related Disorders, 2007, 13, S292-S295.	2.2	26
41	Levodopa partially rescues microglial numerical, morphological, and phagolysosomal alterations in a monkey model of Parkinson's disease. Brain, Behavior, and Immunity, 2020, 90, 81-96.	4.1	26
42	Hippocampal atrophy and abnormal brain development following a prolonged hyperthermic seizure in the immature rat with a focal neocortical lesion. Neurobiology of Disease, 2008, 32, 176-182.	4.4	24
43	Chemical anatomy of pallidal afferents in primates. Brain Structure and Function, 2016, 221, 4291-4317.	2.3	24
44	Distribution and ultrastructural features of the serotonin innervation in rat and squirrel monkey subthalamic nucleus. European Journal of Neuroscience, 2010, 31, 1233-1242.	2.6	23
45	Dysregulated expression of monoacylglycerol lipase is a marker for anti-diabetic drug metformin-targeted therapy to correct impaired neurogenesis and spatial memory in Alzheimer's disease. Theranostics, 2020, 10, 6337-6360.	10.0	22
46	Glutamatergic inputs to midbrain dopaminergic neurons in primates. Parkinsonism and Related Disorders, 1999, 5, 193-201.	2.2	19
47	Jules Bernard Luys: A Singular Figure of 19th Century Neurology. Canadian Journal of Neurological Sciences, 2002, 29, 282-288.	0.5	19
48	Basal ganglia serotonin 1B receptors in parkinsonian monkeys with L-DOPA-induced dyskinesia. Biochemical Pharmacology, 2013, 86, 970-978.	4.4	19
49	Quantitative and ultrastructural study of serotonin innervation of the globus pallidus in squirrel monkeys. European Journal of Neuroscience, 2013, 37, 1659-1668.	2.6	19
50	Effect of chronic l-DOPA treatment on 5-HT1A receptors in parkinsonian monkey brain. Neurochemistry International, 2012, 61, 1160-1171.	3.8	17
51	TheÂcalretinin interneurons of the striatum: comparisons between rodents and primates under normal and pathological conditions. Journal of Neural Transmission, 2018, 125, 279-290.	2.8	17
52	Intact primate brain tissue identification using a completely fibered coherent Raman spectroscopy system. Neurophotonics, 2018, 5, 1.	3.3	17
53	Asynaptic feature and heterogeneous distribution of the cholinergic innervation of the globus pallidus in primates. Brain Structure and Function, 2016, 221, 1139-1155.	2.3	16
54	Evidence for Sprouting of Dopamine and Serotonin Axons in the Pallidum of Parkinsonian Monkeys. Frontiers in Neuroanatomy, 2018, 12, 38.	1.7	16

MARTIN PARENT

	#	Article	IF	CITATIONS
	55	The number of striatal cholinergic interneurons expressing calretinin is increased in parkinsonian monkeys. Neurobiology of Disease, 2016, 95, 46-53.	4.4	15
	56	Dopaminergic neurons establish a distinctive axonal arbor with a majority of nonâ€synaptic terminals. FASEB Journal, 2021, 35, e21791.	0.5	14
	57	Morphological evidence for dopamine interactions with pallidal neurons in primates. Frontiers in Neuroanatomy, 2015, 9, 111.	1.7	12
	58	Convolutional Neural Networks for Spectroscopic Analysis in Retinal Oximetry. Scientific Reports, 2019, 9, 11387.	3.3	12
	59	The highly selective mGlu ₂ receptor positive allosteric modulator LYâ€487,379 alleviates <scp>l</scp> â€DOPAâ€induced dyskinesia in the 6â€OHDAâ€lesioned rat model of Parkinson's disease. European Journal of Neuroscience, 2020, 51, 2412-2422.	2.6	11
	60	Jules Bernard Luys in Charcot's Penumbra. Frontiers of Neurology and Neuroscience, 2010, 29, 125-136.	2.8	9
	61	Potentiation of response to low doses of levodopa in MPTP-injected monkeys by chemical unilateral subthalamotomy. Journal of Neurosurgery, 2013, 118, 180-191.	1.6	9
	62	The Primate Basal Ganglia Connectome As Revealed By Single-Axon Tracing. , 2016, , 27-46.		6
	63	A dense cluster of D ₁ + cells in the mouse nucleus accumbens. Synapse, 2017, 71, 51-54.	1.2	6
	64	Preparation of Non-human Primate Brain Tissue for Pre-embedding Immunohistochemistry and Electron Microscopy. Journal of Visualized Experiments, 2017, , .	0.3	5
	65	Histology-driven model of the macaque motor hyperdirect pathway. Brain Structure and Function, 2021, 226, 2087-2097.	2.3	5
	66	Dopaminergic innervation of the human subventricular zone: a comparison between Huntington's chorea and Parkinson's disease. American Journal of Neurodegenerative Disease, 2013, 2, 221-7.	0.1	5
	67	Intense dopamine innervation of the subventricular zone in Huntington's disease. NeuroReport, 2010, 21, 1074-1079.	1.2	4
	68	Continuous but not intermittent theta burst stimulation decreases striatal dopamine release and cortical excitability. Experimental Neurology, 2022, 354, 114106.	4.1	3
	69	Cholinergic neurons intrinsic to the primate external pallidum. Synapse, 2015, 69, 416-419.	1.2	1
	70	Ultrastructure of the serotonin innervation in mammalian central nervous system. Handbook of Behavioral Neuroscience, 2020, 31, 49-90.	0.7	1
	71	The density of calretinin striatal interneurons is decreased in 6-OHDA-lesioned mice. Brain Structure and Function, 2021, 226, 1879-1891.	2.3	1
_				