Lee A Dyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2810482/publications.pdf

Version: 2024-02-01

218677 168389 3,332 79 26 h-index citations papers

g-index 84 84 84 3786 docs citations times ranked citing authors all docs

53

#	Article	IF	Citations
1	Structural and compositional dimensions of phytochemical diversity in the genus <i>Piper</i> reflect distinct ecological modes of action. Journal of Ecology, 2022, 110, 57-67.	4.0	14
2	Jackâ€ofâ€allâ€trades paradigm meets longâ€term data: Generalist herbivores are more widespread and locally less abundant. Ecology Letters, 2022, 25, 948-957.	6.4	13
3	Reconstructing butterfly-pollen interaction networks through periods of anthropogenic drought in the Great Basin (USA) over the past century. Anthropocene, 2022, 37, 100325.	3.3	3
4	<i>Aximopsis gabrielae</i> sp. nov.: a gregarious parasitoid (Hymenoptera: Eurytomidae) of the skipper <i>Quadrus cerialis</i> (Lepidoptera: Hesperiidae) feeding on <i>Piper amalago</i> in southern Mexico. Journal of Natural History, 2022, 56, 173-189.	0.5	0
5	Plant-Caterpillar-Parasitoid Natural History Studies Over Decades and Across Large Geographic Gradients Provide Insight Into Specialization, Interaction Diversity, and Global Change. Fascinating Life Sciences, 2022, , 583-606.	0.9	2
6	The chemical ecology of tropical forest diversity: Environmental variation, chemical similarity, herbivory, and richness. Ecology, 2022, 103, e3762.	3.2	12
7	James S. Miller (1953–2022): Remembering a Great Entomologist, Musician, and Friend. American Entomologist, 2022, 68, 59-60.	0.2	O
8	Chemically Mediated Multi-trophic Interactions. , 2021, , 17-38.		1
9	A window to the world of global insect declines: Moth biodiversity trends are complex and heterogeneous. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	111
10	Importance of interaction rewiring in determining spatial and temporal turnover of tritrophic (<i>Piper</i> parasitoid) metanetworks in the Yucatán PenÃnsula, México. Biotropica, 2021, 53, 1071-1081.	1.6	9
11	Phytochemistry reflects different evolutionary history in traditional classes versus specialized structural motifs. Scientific Reports, 2021, 11, 17247.	3.3	9
12	Tritrophic interaction diversity in gallery forests: A biologically rich and understudied component of the Brazilian cerrado. Arthropod-Plant Interactions, 2021, 15, 773-785.	1.1	3
13	Testing the applicability of random forest modeling to examine benthic foraminiferal responses to multiple environmental parameters. Marine Environmental Research, 2021, 172, 105502.	2.5	9
14	Good Things Come in Larger Packages: Size Matters for Adult Fruit-Feeding Butterfly Dispersal and Larval Diet Breadth. Diversity, 2021, 13, 664.	1.7	9
15	International scientists formulate a roadmap for insect conservation and recovery. Nature Ecology and Evolution, 2020, 4, 174-176.	7.8	176
16	Secondary metabolites in a neotropical shrub: spatiotemporal allocation and role in fruit defense and dispersal. Ecology, 2020, 101, e03192.	3.2	9
17	Loss of dominant caterpillar genera in a protected tropical forest. Scientific Reports, 2020, 10, 422.	3.3	68
18	Macrophyte Diversity and Complexity Reduce Larval Mosquito Abundance. Journal of Medical Entomology, 2020, 57, 1041-1048.	1.8	2

#	Article	IF	CITATIONS
19	Simulating Groundcover Community Assembly in a Frequently Burned Ecosystem Using a Simple Neutral Model. Frontiers in Plant Science, 2019, 10, 1107.	3.6	7
20	Interaction Diversity Maintains Resiliency in a Frequently Disturbed Ecosystem. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	21
21	Proximity to canopy mediates changes in the defensive chemistry and herbivore loads of an understory tropical shrub, <i>Piper kelleyi</i> . Ecology Letters, 2019, 22, 332-341.	6.4	21
22	Preference and performance of Lepidoptera varies with tree age in juniper woodlands. Ecological Entomology, 2019, 44, 140-150.	2.2	1
23	Challenges and advances in the study of latitudinal gradients in multitrophic interactions, with a focus on consumer specialization. Current Opinion in Insect Science, 2019, 32, 68-76.	4.4	10
24	Maximizing the monitoring of diversity for management activities: Additive partitioning of plant species diversity across a frequently burned ecosystem. Forest Ecology and Management, 2019, 432, 409-414.	3.2	11
25	A species-level taxonomic review and host associations of Glyptapanteles (Hymenoptera, Braconidae,) Tj ETQq1 1 2019, 890, 1-685.	0.784314 1.1	4 rgBT /Over 18
26	Host plant associated enhancement of immunity and survival in virus infected caterpillars. Journal of Invertebrate Pathology, 2018, 151, 102-112.	3.2	35
27	Changing interactions among persistent species as the major driver of seasonal turnover in plant-caterpillar interactions. PLoS ONE, 2018, 13, e0203164.	2.5	11
28	Multidimensional diversity associated with plants: a view from a plant–insect interaction ecologist. American Journal of Botany, 2018, 105, 1439-1442.	1.7	9
29	Modern approaches to study plant–insect interactions in chemical ecology. Nature Reviews Chemistry, 2018, 2, 50-64.	30.2	97
30	Across Multiple Species, Phytochemical Diversity and Herbivore Diet Breadth Have Cascading Effects on Herbivore Immunity and Parasitism in a Tropical Model System. Frontiers in Plant Science, 2018, 9, 656.	3.6	25
31	Promises and challenges in insect–plant interactions. Entomologia Experimentalis Et Applicata, 2018, 166, 319-343.	1.4	66
32	Shedding Light on Chemically Mediated Tri-Trophic Interactions: A 1H-NMR Network Approach to Identify Compound Structural Features and Associated Biological Activity. Frontiers in Plant Science, 2018, 9, 1155.	3.6	12
33	Simulated tri-trophic networks reveal complex relationships between species diversity and interaction diversity. PLoS ONE, 2018, 13, e0193822.	2.5	10
34	Similarity in volatile communities leads to increased herbivory and greater tropical forest diversity. Ecology, 2017, 98, 1750-1756.	3.2	32
35	Specialised generalists? Food web structure of a tropical tachinidâ€caterpillar community. Insect Conservation and Diversity, 2017, 10, 367-384.	3.0	16
36	Overstoryâ€derived surface fuels mediate plant species diversity in frequently burned longleaf pine forests. Ecosphere, 2017, 8, e01964.	2,2	39

#	Article	IF	CITATIONS
37	Host conservatism, geography, and elevation in the evolution of a Neotropical moth radiation. Evolution; International Journal of Organic Evolution, 2017, 71, 2885-2900.	2.3	10
38	An arthropod survival strategy in a frequently burned forest. Ecology, 2017, 98, 2972-2974.	3.2	21
39	Seasonal variation in diet breadth of folivorous Lepidoptera in the Brazilian cerrado. Biotropica, 2016, 48, 491-498.	1.6	26
40	Intraspecific phytochemical variation shapes community and population structure for specialist caterpillars. New Phytologist, 2016, 212, 208-219.	7.3	90
41	Wherefore and Whither the Modeler: Understanding the Population Dynamics of Monarchs Will Require Integrative and Quantitative Techniques. Annals of the Entomological Society of America, 2016, 109, 172-175.	2.5	16
42	Phytochemical diversity and synergistic effects on herbivores. Phytochemistry Reviews, 2016, 15, 1153-1166.	6.5	97
43	Does plant apparency matter? Thirty years of data provide limited support but reveal clear patterns of the effects of plant chemistry on herbivores. New Phytologist, 2016, 210, 1044-1057.	7.3	84
44	Trait-mediated trophic cascade creates enemy-free space for nesting hummingbirds. Science Advances, 2015, 1, e1500310.	10.3	22
45	The global distribution of diet breadth in insect herbivores. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 442-447.	7.1	454
46	Phytochemical diversity drives plant–insect community diversity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10973-10978.	7.1	246
47	Dietary specialization and the effects of plant species on potential multitrophic interactions of three species of nymphaline caterpillars. Entomologia Experimentalis Et Applicata, 2014, 153, 207-216.	1.4	17
48	Antiherbivore Prenylated Benzoic Acid Derivatives from <i>Piper kelleyi</i> . Journal of Natural Products, 2014, 77, 148-153.	3.0	33
49	Canopy Openness Enhances Diversity of Ant–Plant Interactions in the Brazilian Amazon Rain Forest. Biotropica, 2014, 46, 712-719.	1.6	27
50	New dimensions of tropical diversity: an inordinate fondness for insect molecules, taxa, and trophic interactions. Current Opinion in Insect Science, 2014, 2, 14-19.	4.4	21
51	Piper kelleyi, a hotspot of ecological interactions and aÂnew species from Ecuador and Peru. PhytoKeys, 2014, 34, 19-32.	1.0	23
52	Can Climate Change Trigger Massive Diversity Cascades in Terrestrial Ecosystems?. Diversity, 2013, 5, 479-504.	1.7	15
53	Effects of CO2 and Temperature on Tritrophic Interactions. PLoS ONE, 2013, 8, e62528.	2.5	73
54	Effects of Banana Plantation Pesticides on the Immune Response of Lepidopteran Larvae and Their Parasitoid Natural Enemies. Insects, 2012, 3, 616-628.	2.2	13

#	Article	IF	Citations
55	Novel Insights into Tritrophic Interaction Diversity and Chemical Ecology Using 16 Years of Volunteer-Supported Research American Entomologist, 2012, 58, 15-19.	0.2	12
56	First Description of the Early Stage Biology of the Genus <i>Mygona</i> : The Natural History of the Satyrine Butterfly, <i>Mygona irmina</i> i>in Eastern Ecuador. Journal of Insect Science, 2011, 11, 1-11.	1.5	3
57	Natural History of <i>Eryphanis greeneyi </i> (Lepidoptera: Nymphalidae) and Its Enemies, with a Description of a New Species of Braconid Parasitoid and Notes on Its Tachinid Parasitoid. Annals of the Entomological Society of America, 2011, 104, 1078-1090.	2.5	10
58	Ecology, Natural History, and Larval Descriptions of Arctiinae (Lepidoptera: Noctuoidea: Erebidae) from a Cloud Forest in the Eastern Andes of Ecuador. Annals of the Entomological Society of America, 2011, 104, 1135-1148.	2.5	13
59	Restoration of Pasture to Forest in Brazil's Mata Atl $ ilde{A}$ ¢ntica: The Roles of Herbivory, Seedling Defenses, and Plot Design in Reforestation. Restoration Ecology, 2011, 19, 257-267.	2.9	25
60	Weighing Defensive and Nutritive Roles of Ant Mutualists Across a Tropical Altitudinal Gradient. Biotropica, 2011, 43, 343-350.	1.6	18
61	New Synthesis—Back to the Future: New Approaches and Directions in Chemical Studies of Coevolution. Journal of Chemical Ecology, 2011, 37, 669-669.	1.8	11
62	A quantitative evaluation of major plant defense hypotheses, nature versus nurture, and chemistry versus ants. Arthropod-Plant Interactions, 2011, 5, 125-139.	1.1	50
63	A meta-analysis of the effects of global environmental change on plant-herbivore interactions. Arthropod-Plant Interactions, 2010, 4, 181-188.	1.1	68
64	Synergistic Effects of Amides from Two Piper Species on Generalist and Specialist Herbivores. Journal of Chemical Ecology, 2010, 36, 1105-1113.	1.8	86
65	Diversity of Interactions: A Metric for Studies of Biodiversity. Biotropica, 2010, 42, 281-289.	1.6	69
66	Tropical forests are not flat: how mountains affect herbivore diversity. Ecology Letters, 2010, 13, 1348-1357.	6.4	69
67	Herbivores on a dominant understory shrub increase local plant diversity in rain forest communities. Ecology, 2010, 91, 3707-3718.	3.2	46
68	A Key to New World <i>Distatrix</i> Mason (Hymenoptera: Braconidae), with Descriptions of Six New Reared Neotropical Species. Journal of Insect Science, 2009, 9, 1-17.	1.5	15
69	Geographic Variation in Host-Specificity and Parasitoid Pressure of an Herbivore (Geometridae) Associated with the Tropical Genus <i>Piper</i> (Piperaceae). Journal of Insect Science, 2009, 9, 1-11.	1.5	39
70	The insect immune response and other putative defenses as effective predictors of parasitism. Ecology, 2009, 90, 1434-1440.	3.2	96
71	Understanding why underrepresented students pursue ecology careers: a preliminary case study. Frontiers in Ecology and the Environment, 2007, 5, 415-420.	4.0	19
72	Multi-trophic interactions and biodiversity: beetles, ants, caterpillars and plants., 2005,, 366-385.		3

#	Article	IF	CITATION
73	Fitness Consequences of Herbivory: Impacts on Asexual Reproduction of Tropical Rain Forest Understory Plants. Biotropica, 2004, 36, 68-73.	1.6	7
74	A bioassay for insect deterrent compounds found in plant and animal tissues. Phytochemical Analysis, 2003, 14, 381-388.	2.4	15
75	ON THE CONDITIONAL NATURE OF NEOTROPICAL CATERPILLAR DEFENSES AGAINST THEIR NATURAL ENEMIES. Ecology, 2002, 83, 3108-3119.	3.2	178
76	A quantification of predation rates, indirect positive effects on plants, and foraging variation of the giant tropical ant, Paraponera clavata. Journal of Insect Science, 2002, 2, 18.	1.5	10
77	Top-down and bottom-up diversity cascades in detrital vs. living food webs. Ecology Letters, 2002, 6, 60-68.	6.4	119
78	Trade-offs in antiherbivore defenses in Piper cenocladum: ant mutualists versus plant secondary metabolites. Journal of Chemical Ecology, 2001, 27, 581-592.	1.8	88
79	Effectiveness of caterpillar defenses against three species of invertebrate predators. The Journal of Research on the Lepidoptera, 1997, 34, 48-68.	0.1	58