Etienne Delannoy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2809638/publications.pdf

Version: 2024-02-01

48 3,829 26
papers citations h-index

47 g-index

51 51 all docs citations

51 times ranked 4340 citing authors

#	Article	IF	CITATIONS
1	Analysis of the Plant Mitochondrial Transcriptome. Methods in Molecular Biology, 2022, 2363, 235-262.	0.9	7
2	BdERECTA controls vasculature patterning and phloem-xylem organization in Brachypodium distachyon. BMC Plant Biology, 2021, 21, 196.	3.6	7
3	The Genomic Impact of Mycoheterotrophy in Orchids. Frontiers in Plant Science, 2021, 12, 632033.	3.6	9
4	Transcriptome Analysis Reveals Putative Target Genes of APETALA3-3 During Early Floral Development in Nigella damascena L Frontiers in Plant Science, 2021, 12, 660803.	3.6	4
5	Full Length Transcriptome Highlights the Coordination of Plastid Transcript Processing. International Journal of Molecular Sciences, 2021, 22, 11297.	4.1	7
6	Landscape of the Noncoding Transcriptome Response of Two Arabidopsis Ecotypes to Phosphate Starvation. Plant Physiology, 2020, 183, 1058-1072.	4.8	23
7	The Consequences of a Disruption in Cyto-Nuclear Coadaptation on the Molecular Response to a Nitrate Starvation in Arabidopsis. Plants, 2020, 9, 573.	3.5	0
8	The Analysis of the Editing Defects in the dyw2 Mutant Provides New Clues for the Prediction of RNA Targets of Arabidopsis E+-Class PPR Proteins. Plants, 2020, 9, 280.	3.5	21
9	Thirteen New Plastid Genomes from Mixotrophic and Autotrophic Species Provide Insights into Heterotrophy Evolution in Neottieae Orchids. Genome Biology and Evolution, 2019, 11, 2457-2467.	2.5	26
10	Unraveling the Developmental and Genetic Mechanisms Underpinning Floral Architecture in Proteaceae. Frontiers in Plant Science, 2019, 10, 18.	3.6	17
11	Mitochondrial Transcriptome Control and Intercompartment Cross-Talk During Plant Development. Cells, 2019, 8, 583.	4.1	7
12	<i>In situ</i> transcriptomic and metabolomic study of the loss of photosynthesis in the leaves of mixotrophic plants exploiting fungi. Plant Journal, 2019, 98, 826-841.	5.7	25
13	A systems biology approach uncovers a gene co-expression network associated with cell wall degradability in maize. PLoS ONE, 2019, 14, e0227011.	2.5	2
14	Synthetic data sets for the identification of key ingredients for RNA-seq differential analysis. Briefings in Bioinformatics, 2018, 19, bbw092.	6.5	40
15	Homoeologous exchanges cause extensive dosageâ€dependent gene expression changes in an allopolyploid crop. New Phytologist, 2018, 217, 367-377.	7.3	87
16	Bioinformatic Analysis of Chloroplast Gene Expression and RNA Posttranscriptional Maturations Using RNA Sequencing. Methods in Molecular Biology, 2018, 1829, 279-294.	0.9	12
17	Combining laser-assisted microdissection (LAM) and RNA-seq allows to perform a comprehensive transcriptomic analysis of epidermal cells of Arabidopsis embryo. Plant Methods, 2018, 14, 10.	4.3	19
18	Function of the Plant DNA Polymerase Epsilon in Replicative Stress Sensing, a Genetic Analysis. Plant Physiology, 2017, 173, 1735-1749.	4.8	26

#	Article	IF	CITATIONS
19	Low phosphate activates STOP1-ALMT1 to rapidly inhibit root cell elongation. Nature Communications, 2017, 8, 15300.	12.8	268
20	Characterization of <i>CYCLOIDEA </i> -like genes in Proteaceae, a basal eudicot family with multiple shifts in floral symmetry. Annals of Botany, 2017, 119, 367-378.	2.9	37
21	Two interacting PPR proteins are major Arabidopsis editing factors in plastid and mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8877-8882.	7.1	111
22	A novel role for the root cap in phosphate uptake and homeostasis. ELife, 2016, 5, e14577.	6.0	79
23	A chemical genetic strategy identify the <scp>PHOSTIN</scp> , a synthetic molecule that triggers phosphate starvation responses in <i>Arabidopsis thaliana</i> . New Phytologist, 2016, 209, 161-176.	7.3	15
24	Role of the Polymerase ϵ sub-unit DPB2 in DNA replication, cell cycle regulation and DNA damage response in Arabidopsis. Nucleic Acids Research, 2016, 44, gkw449.	14.5	18
25	GEM2Net: from gene expression modeling to -omics networks, a new CATdb module to investigate Arabidopsis thaliana genes involved in stress response. Nucleic Acids Research, 2015, 43, D1010-D1017.	14.5	14
26	Identification of Phosphatin, a Drug Alleviating Phosphate Starvation Responses in Arabidopsis Â. Plant Physiology, 2014, 166, 1479-1491.	4.8	20
27	Arabidopsis CSP41 proteins form multimeric complexes that bind and stabilize distinct plastid transcripts. Journal of Experimental Botany, 2012, 63, 1251-1270.	4.8	49
28	Nucleotide and RNA Metabolism Prime Translational Initiation in the Earliest Events of Mitochondrial Biogenesis during Arabidopsis Germination \hat{A} \hat{A} . Plant Physiology, 2012, 158, 1610-1627.	4.8	124
29	OTP70 is a pentatricopeptide repeat protein of the Eâ€∫subgroup involved in splicing of the plastid transcript <i>rpoC1</i> . Plant Journal, 2011, 65, 532-542.	5.7	106
30	Rampant Gene Loss in the Underground Orchid Rhizanthella gardneri Highlights Evolutionary Constraints on Plastid Genomes. Molecular Biology and Evolution, 2011, 28, 2077-2086.	8.9	248
31	Sublethal Cadmium Intoxication In Arabidopsis thaliana Impacts Translation at Multiple Levels. Plant and Cell Physiology, 2011, 52, 436-447.	3.1	51
32	The Cytoskeleton and the Peroxisomal-Targeted SNOWY COTYLEDON3 Protein Are Required for Chloroplast Development in <i>Arabidopsis</i>	6.6	77
33	<i>Arabidopsis</i> tRNA Adenosine Deaminase Arginine Edits the Wobble Nucleotide of Chloroplast tRNAArg(ACG) and Is Essential for Efficient Chloroplast Translation. Plant Cell, 2009, 21, 2058-2071.	6.6	69
34	Biochemical Evidence for Translational Repression by <i>Arabidopsis</i> MicroRNAs. Plant Cell, 2009, 21, 1762-1768.	6.6	289
35	Phage-Type RNA Polymerase RPOTmp Performs Gene-Specific Transcription in Mitochondria of Arabidopsis thaliana Â. Plant Cell, 2009, 21, 2762-2779.	6.6	134
36	Remodeled Respiration in <i>ndufs4</i> with Low Phosphorylation Efficiency Suppresses Arabidopsis Germination and Growth and Alters Control of Metabolism at Night \hat{A} \hat{A} . Plant Physiology, 2009, 151, 603-619.	4.8	281

3

#	Article	IF	CITATION
37	Chloroplast ribonucleoprotein CP31A is required for editing and stability of specific chloroplast mRNAs. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6002-6007.	7.1	109
38	The Arabidopsis gene <i>YS1</i> encoding a DYW protein is required for editing of <i>rpoB</i> transcripts and the rapid development of chloroplasts during early growth. Plant Journal, 2009, 58, 82-96.	5.7	178
39	Pentatricopeptide Repeat Proteins with the DYW Motif Have Distinct Molecular Functions in RNA Editing and RNA Cleavage in <i>Arabidopsis</i> Chloroplasts. Plant Cell, 2009, 21, 146-156.	6.6	226
40	CLB19, a pentatricopeptide repeat protein required for editing of <i>rpoA</i> and <i>clpP</i> chloroplast transcripts. Plant Journal, 2008, 56, 590-602.	5.7	236
41	The pentatricopeptide repeat gene <i>OTP51</i> with two LAGLIDADG motifs is required for the <i>cis</i> â€splicing of plastid <i>ycf3</i> intronâ€f2 in <i>Arabidopsis thaliana</i> Plant Journal, 2008, 56, 157-168.	5.7	148
42	Complex I Dysfunction Redirects Cellular and Mitochondrial Metabolism in Arabidopsis Â. Plant Physiology, 2008, 148, 1324-1341.	4.8	98
43	Pentatricopeptide repeat (PPR) proteins as sequence-specificity factors in post-transcriptional processes in organelles. Biochemical Society Transactions, 2007, 35, 1643-1647.	3.4	215
44	Molecular cloning and characterization of Gossypium hirsutum superoxide dismutase genes during cotton–Xanthomonas campestris pv. malvacearum interaction. Physiological and Molecular Plant Pathology, 2006, 68, 119-127.	2.5	14
45	Resistance of Cotton Towards Xanthomonas campestris pv. malvacearum. Annual Review of Phytopathology, 2005, 43, 63-82.	7.8	60
46	Les peroxydases végétales de classe III. Acta Botanica Gallica, 2004, 151, 353-380.	0.9	12
47	Activity of Class III Peroxidases in the Defense of Cotton to Bacterial Blight. Molecular Plant-Microbe Interactions, 2003, 16, 1030-1038.	2.6	67
48	Lipid peroxidation in cotton:Xanthomonasinteractions and the role of lipoxygenases during the hypersensitive reaction. Plant Journal. 2002. 32. 1-12.	5 . 7	134