
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2808417/publications.pdf Version: 2024-02-01

ΔΝΠΟΖΕΙ Λ.Δ305ΚΙ

#	Article	IF	CITATIONS
1	Phage therapy of wound-associated infections. Folia Microbiologica, 2022, 67, 193-201.	2.3	15
2	The contribution of phage therapy to medical knowledge. Journal of Global Antimicrobial Resistance, 2022, 28, 238-240.	2.2	6
3	What Are the Potential Benefits of Using Bacteriophages in Periodontal Therapy?. Antibiotics, 2022, 11, 446.	3.7	4
4	Bacteriophages and antibiotic interactions in clinical practice: what we have learned so far. Journal of Biomedical Science, 2022, 29, 23.	7.0	39
5	AITE Celebrates Its 70th Year of Publication (1953–2022). Archivum Immunologiae Et Therapiae Experimentalis, 2022, 70, 1.	2.3	3
6	A Thorough Synthesis of Phage Therapy Unit Activity in Poland—Its History, Milestones and International Recognition. Viruses, 2022, 14, 1170.	3.3	11
7	Two Newly Isolated Enterobacter-Specific Bacteriophages: Biological Properties and Stability Studies. Viruses, 2022, 14, 1518.	3.3	8
8	Treatment of recurrent urinary tract infections in a 60â€yearâ€old kidney transplant recipient. The use of phage therapy. Transplant Infectious Disease, 2021, 23, e13391.	1.7	42
9	Ethics codes and medical decision making. Patient Education and Counseling, 2021, 104, 1312-1316.	2.2	7
10	Anti-phage serum antibody responses and the outcome of phage therapy. Folia Microbiologica, 2021, 66, 127-131.	2.3	9
11	Anti-biofilm activity of bacteriophages and lysins in chronic rhinosinusitis. Acta Virologica, 2021, 65, 127-140.	0.8	6
12	Animal Models in the Evaluation of the Effectiveness of Phage Therapy for Infections Caused by Gram-Negative Bacteria from the ESKAPE Group and the Reliability of Its Use in Humans. Microorganisms, 2021, 9, 206.	3.6	23
13	Bacteriophage Pharmacology and Immunology. , 2021, , 295-339.		3
14	ClinicalTrials.gov as a Source of Information About Expanded Access Programs: Cohort Study. Journal of Medical Internet Research, 2021, 23, e26890.	4.3	3
15	The Role of Antibiotic Resistant A. baumannii in the Pathogenesis of Urinary Tract Infection and the Potential of Its Treatment with the Use of Bacteriophage Therapy. Antibiotics, 2021, 10, 281.	3.7	25
16	Engineered Bacteriophage Therapeutics: Rationale, Challenges and Future. BioDrugs, 2021, 35, 255-280.	4.6	62
17	Low Immunogenicity of Intravesical Phage Therapy for Urogenitary Tract Infections. Antibiotics, 2021, 10, 627.	3.7	9
18	Temperate Bacteriophages—The Powerful Indirect Modulators of Eukaryotic Cells and Immune Functions. Viruses, 2021, 13, 1013.	3.3	11

#	Article	IF	CITATIONS
19	Public availability of results of ClinicalTrials.govâ€registered expanded access studies. British Journal of Clinical Pharmacology, 2021, , .	2.4	1
20	Immune Response to Therapeutic Staphylococcal Bacteriophages in Mammals: Kinetics of Induction, Immunogenic Structural Proteins, Natural and Induced Antibodies. Frontiers in Immunology, 2021, 12, 639570.	4.8	19
21	Isolation and Characterization of Phages Active against Paenibacillus larvae Causing American Foulbrood in Honeybees in Poland. Viruses, 2021, 13, 1217.	3.3	8
22	Editorial: Advances in Phage Therapy: Present Challenges and Future Perspectives. Frontiers in Microbiology, 2021, 12, 701898.	3.5	13
23	Conflicts of interest in oncology expanded access studies. International Journal of Cancer, 2021, 149, 1809-1816.	5.1	3
24	Potential for Phages in the Treatment of Bacterial Sexually Transmitted Infections. Antibiotics, 2021, 10, 1030.	3.7	8
25	Journal Impact Factor and Self-Citations. Archivum Immunologiae Et Therapiae Experimentalis, 2021, 69, 21.	2.3	4
26	Identification of the Primary Structure of Selenium-Containing Polysaccharides Selectively Inhibiting T-Cell Proliferation. Molecules, 2021, 26, 5404.	3.8	4
27	Current Updates from the Long-Standing Phage Research Centers in Georgia, Poland, and Russia. , 2021, , 921-951.		8
28	Therapeutic Perspectives and Mechanistic Insights of Phage Therapy in Allotransplantation. Transplantation, 2021, 105, 1449-1458.	1.0	13
29	BronisÅ,awa Fejgin (1883–1943): Forgotten Important Contributor to International Microbiology and Phage Therapy. Antibiotics, 2021, 10, 1353.	3.7	2
30	Human β-Defensin 2 and Its Postulated Role in Modulation of the Immune Response. Cells, 2021, 10, 2991.	4.1	26
31	Phage therapy: Current status and perspectives. Medicinal Research Reviews, 2020, 40, 459-463.	10.5	102
32	Sepsis, Phages, and COVID-19. Pathogens, 2020, 9, 844.	2.8	6
33	Phage Prevalence in the Human Urinary Tract—Current Knowledge and Therapeutic Implications. Microorganisms, 2020, 8, 1802.	3.6	16
34	Phage Therapy: Towards a Successful Clinical Trial. Antibiotics, 2020, 9, 827.	3.7	59
35	Ethics framework for treatment use of investigational drugs. BMC Medical Ethics, 2020, 21, 116.	2.4	6
36	Phages in Therapy and Prophylaxis of American Foulbrood – Recent Implications From Practical Applications. Frontiers in Microbiology, 2020, 11, 1913.	3.5	12

#	Article	IF	CITATIONS
37	Phages in the fight against COVID-19?. Future Microbiology, 2020, 15, 1095-1100.	2.0	26
38	Phages as a Cohesive Prophylactic and Therapeutic Approach in Aquaculture Systems. Antibiotics, 2020, 9, 564.	3.7	18
39	The Rationale for Using Bacteriophage to Treat and Prevent Periprosthetic Joint Infections. Frontiers in Microbiology, 2020, 11, 591021.	3.5	9
40	The Presence of Bacteriophages in the Human Body: Good, Bad or Neutral?. Microorganisms, 2020, 8, 2012.	3.6	18
41	The preliminary association study of osteopontin 707 C/T polymorphism with systemic lupus erythematosus in a Polish population. Postepy Dermatologii I Alergologii, 2020, 37, 190-194.	0.9	1
42	Phage Therapy in Poland – a Centennial Journey to the First Ethically Approved Treatment Facility in Europe. Frontiers in Microbiology, 2020, 11, 1056.	3.5	44
43	Natural and Induced Antibodies Against Phages in Humans: Induction Kinetics and Immunogenicity for Structural Proteins of PB1-Related Phages. Phage, 2020, 1, 91-99.	1.7	12
44	Microbiota in organ transplantation: An immunological and therapeutic conundrum?. Cellular Immunology, 2020, 351, 104080.	3.0	10
45	Bacteriophages and Lysins in Biofilm Control. Virologica Sinica, 2020, 35, 125-133.	3.0	66
46	Legal regulations, ethical guidelines and recent policies to increase transparency of clinical trials. British Journal of Clinical Pharmacology, 2020, 86, 679-686.	2.4	12
47	Bacteriophage Interactions With Epithelial Cells: Therapeutic Implications. Frontiers in Microbiology, 2020, 11, 631161.	3.5	14
48	The effects of T4 and A5/80 phages on the expression of immunologically important genes in differentiated Caco-2 cells*. Postepy Higieny I Medycyny Doswiadczalnej, 2020, 74, 371-376.	0.1	5
49	Polish Contribution to the Advancement of Phage Treatment in Humans. , 2020, , .		0
50	Inhibitory Effects of Bacteriophage Preparations on Adenoviral Replication. Intervirology, 2019, 62, 37-44.	2.8	7
51	The fall and rise of phage therapy in modern medicine. Expert Opinion on Biological Therapy, 2019, 19, 1115-1117.	3.1	19
52	Selenium-containing polysaccharides from Lentinula edodes—Biological activity. Carbohydrate Polymers, 2019, 223, 115078.	10.2	22
53	Factors determining phage stability/activity: challenges in practical phage application. Expert Review of Anti-Infective Therapy, 2019, 17, 583-606.	4.4	82
54	Reply to "Innovation and offâ€label use, the French case and more†by Braillon and Lexchin. British Journal of Clinical Pharmacology, 2019, 85, 2448-2449.	2.4	1

Andrzej Górski

#	Article	IF	CITATIONS
55	Phage-specific diverse effects of bacterial viruses on the immune system. Future Microbiology, 2019, 14, 1171-1174.	2.0	22
56	Specific and Selective Bacteriophages in the Fight against Multidrug-resistant Acinetobacter baumannii. Virologica Sinica, 2019, 34, 347-357.	3.0	22
57	Compassionate use of unauthorized drugs: Legal regulations and ethical challenges. European Journal of Internal Medicine, 2019, 65, 12-16.	2.2	25
58	Bacteriophages engineered to display foreign peptides may become shortâ€circulating phages. Microbial Biotechnology, 2019, 12, 730-741.	4.2	29
59	Phage penetration of eukaryotic cells: practical implications. Future Virology, 2019, 14, 745-760.	1.8	16
60	Induction of Phage-Specific Antibodies by Two Therapeutic Staphylococcal Bacteriophages Administered per os. Frontiers in Immunology, 2019, 10, 2607.	4.8	48
61	The Role of the Virome in the Gut-Liver Axis. , 2019, , 121-131.		Ο
62	Ethics codes and use of new and innovative drugs. British Journal of Clinical Pharmacology, 2019, 85, 501-507.	2.4	21
63	Phage Therapy in Orthopaedic Implant-Associated Infections. , 2019, , 189-211.		5
64	The long-term outcome of renal transplantation. A 10-year follow-up of 765 recipients. Polish Archives of Internal Medicine, 2019, 129, 476-483.	0.4	3
65	The effects of bacteriophages on the expression of genes involved in antimicrobial immunity*. Postepy Higieny I Medycyny Doswiadczalnej, 2019, 73, 414-420.	0.1	7
66	Ethics of Phage Therapy. , 2019, , 379-385.		0
67	Humoral Immune Response to Phage-Based Therapeutics. , 2019, , 123-143.		3
68	Expanded access: growing importance to public health. Journal of Epidemiology and Community Health, 2018, 72, 557-558.	3.7	2
69	Phage therapy in allergic disorders?. Experimental Biology and Medicine, 2018, 243, 534-537.	2.4	13
70	Therapeutic potential of phages in autoimmune liver diseases. Clinical and Experimental Immunology, 2018, 192, 1-6.	2.6	14
71	Bacteriophages targeting intestinal epithelial cells: a potential novel form of immunotherapy. Cellular and Molecular Life Sciences, 2018, 75, 589-595.	5.4	24
72	Use of a Regression Model to Study Host-Genomic Determinants of Phage Susceptibility in MRSA. Antibiotics, 2018, 7, 9.	3.7	5

#	Article	IF	CITATIONS
73	Building the Prestige of Archivum Immunologiae et Therapiae Experimentalis: From a Little Known to an Internationally Recognized Journal. Archivum Immunologiae Et Therapiae Experimentalis, 2018, 66, 407-413.	2.3	3
74	"Phage Transplantation in Allotransplantation― Possible Treatment in Graft-Versus-Host Disease?. Frontiers in Immunology, 2018, 9, 941.	4.8	8
75	Phage Therapy: Beyond Antibacterial Action. Frontiers in Medicine, 2018, 5, 146.	2.6	27
76	Perspectives of Phage–Eukaryotic Cell Interactions to Control Epstein–Barr Virus Infections. Frontiers in Microbiology, 2018, 9, 630.	3.5	13
77	Phage Therapy in Prostatitis: Recent Prospects. Frontiers in Microbiology, 2018, 9, 1434.	3.5	18
78	Phage Therapy: What Have We Learned?. Viruses, 2018, 10, 288.	3.3	101
79	Perspectives of Phage Therapy in Non-bacterial Infections. Frontiers in Microbiology, 2018, 9, 3306.	3.5	49
80	Current Updates from the Long-Standing Phage Research Centers in Georgia, Poland, and Russia. , 2018, , 1-31.		13
81	Bacteriophage Pharmacology and Immunology. , 2018, , 1-45.		2
82	Phages and immunomodulation. Future Microbiology, 2017, 12, 905-914.	2.0	117
83	Can phage therapy solve the problem of recalcitrant chronic rhinosinusitis?. Future Microbiology, 2017, 12, 1427-1442.	2.0	8
84	Delivering phage therapy <i>per os</i> : benefits and barriers. Expert Review of Anti-Infective Therapy, 2017, 15, 167-179.	4.4	27
85	Antiphage activity of sera during phage therapy in relation to its outcome. Future Microbiology, 2017, 12, 109-117.	2.0	71
86	Bacteriophages in the gastrointestinal tract and their implications. Gut Pathogens, 2017, 9, 44.	3.4	114
87	A3R Phage and Staphylococcus aureus Lysate Do Not Induce Neutrophil Degranulation. Viruses, 2017, 9, 36.	3.3	20
88	Phage-Phagocyte Interactions and Their Implications for Phage Application as Therapeutics. Viruses, 2017, 9, 150.	3.3	62
89	The Potential of Phage Therapy in Sepsis. Frontiers in Immunology, 2017, 8, 1783.	4.8	35
90	Prospects of Phage Application in the Treatment of Acne Caused by Propionibacterium acnes. Frontiers in Microbiology, 2017, 8, 164.	3.5	30

Andrzej Górski

#	Article	IF	CITATIONS
91	Means to Facilitate the Overcoming of Gastric Juice Barrier by a Therapeutic Staphylococcal Bacteriophage A5/80. Frontiers in Microbiology, 2017, 08, 467.	3.5	50
92	<i>In Vivo</i> Studies on the Influence of Bacteriophage Preparations on the Autoimmune Inflammatory Process. BioMed Research International, 2017, 2017, 1-9.	1.9	39
93	Ethics review in compassionate use. BMC Medicine, 2017, 15, 136.	5.5	38
94	Immunological biomarkers and long term graft survival. Prospective follow-up of 457 kidney transplant recipients. Polish Archives of Internal Medicine, 2017, 127, 178-183.	0.4	3
95	T4 Phage Tail Adhesin Gp12 Counteracts LPS-Induced Inflammation In Vivo. Frontiers in Microbiology, 2016, 7, 1112.	3.5	83
96	Bacteriophage Procurement for Therapeutic Purposes. Frontiers in Microbiology, 2016, 7, 1177.	3.5	125
97	The Effects of T4 and A3/R Bacteriophages on Differentiation of Human Myeloid Dendritic Cells. Frontiers in Microbiology, 2016, 7, 1267.	3.5	14
98	LPS-Activated Monocytes Are Unresponsive to T4 Phage and T4-Generated Escherichia coli Lysate. Frontiers in Microbiology, 2016, 7, 1356.	3.5	8
99	Phage Therapy: Combating Infections with Potential for Evolving from Merely a Treatment for Complications to Targeting Diseases. Frontiers in Microbiology, 2016, 7, 1515.	3.5	120
100	Antibody Production in Response to Staphylococcal MS-1 Phage Cocktail in Patients Undergoing Phage Therapy. Frontiers in Microbiology, 2016, 7, 1681.	3.5	92
101	Structure of Post-Transplant Care in a Single Transplant Center. Annals of Transplantation, 2016, 21, 194-199.	0.9	2
102	Mammalian Host-Versus-Phage immune response determines phage fate in vivo. Scientific Reports, 2015, 5, 14802.	3.3	201
103	The Effect of Bacteriophage Preparations on Intracellular Killing of Bacteria by Phagocytes. Journal of Immunology Research, 2015, 2015, 1-13.	2.2	39
104	Quality and Safety Requirements for Sustainable Phage Therapy Products. Pharmaceutical Research, 2015, 32, 2173-2179.	3.5	176
105	Phages targeting infected tissues: novel approach to phage therapy. Future Microbiology, 2015, 10, 199-204.	2.0	40
106	T4 bacteriophage-mediated inhibition of adsorption and replication of human adenovirus <i>in vitro</i> . Future Microbiology, 2015, 10, 453-460.	2.0	26
107	Toll-Like Receptor 4 Gene Polymorphism C1196T in Polish Women with Postmenopausal Osteoporosis - Preliminary Investigation. Advances in Clinical and Experimental Medicine, 2015, 24, 239-243.	1.4	7
108	Taking Bacteriophage Therapy Seriously: A Moral Argument. BioMed Research International, 2014, 2014, 1-8.	1.9	31

#	Article	IF	CITATIONS
109	Possible Use of Bacteriophages Active against <i>Bacillus anthracis</i> and Other <i>B. cereus</i> Group Members in the Face of a Bioterrorism Threat. BioMed Research International, 2014, 2014, 1-14.	1.9	12
110	Facing Antibiotic Resistance: Staphylococcus aureus Phages as a Medical Tool. Viruses, 2014, 6, 2551-2570.	3.3	80
111	Molecular imaging of T4 phage in mammalian tissues and cells. Bacteriophage, 2014, 4, e28364.	1.9	37
112	Immunogenicity Studies of Proteins Forming the T4 Phage Head Surface. Journal of Virology, 2014, 88, 12551-12557.	3.4	135
113	In vitro design of a novel lytic bacteriophage cocktail with therapeutic potential against organisms causing diabetic foot infections. Journal of Medical Microbiology, 2014, 63, 1055-1065.	1.8	64
114	Bacteriophages displaying anticancer peptides in combined antibacterial and anticancer treatment. Future Microbiology, 2014, 9, 861-869.	2.0	22
115	Phage Neutralization by Sera of Patients Receiving Phage Therapy. Viral Immunology, 2014, 27, 295-304.	1.3	179
116	Characterising the biology of novel lytic bacteriophages infecting multidrug resistant Klebsiella pneumoniae. Virology Journal, 2013, 10, 100.	3.4	112
117	Wound healing potential of topical bacteriophage therapy on diabetic cutaneous wounds. Wound Repair and Regeneration, 2013, 21, 595-603.	3.0	92
118	Transplantation of Autologous Olfactory Ensheathing Cells in Complete Human Spinal Cord Injury. Cell Transplantation, 2013, 22, 1591-1612.	2.5	238
119	A novel approach for separating bacteriophages from other bacteriophages using affinity chromatography and phage display. Scientific Reports, 2013, 3, 3220.	3.3	27
120	Influence of Bacteriophage Preparations on Intracellular Killing of Bacteria by Human Phagocytes <i>in Vitro</i> . Viral Immunology, 2013, 26, 150-162.	1.3	12
121	T4 Phage and Its Head Surface Proteins Do Not Stimulate Inflammatory Mediator Production. PLoS ONE, 2013, 8, e71036.	2.5	79
122	Influence of bacteriophage preparations on migration of HL-60 leukemia cells in vitro. Anticancer Research, 2013, 33, 1569-74.	1.1	3
123	Phage as a Modulator of Immune Responses. Advances in Virus Research, 2012, 83, 41-71.	2.1	206
124	Clinical Aspects of Phage Therapy. Advances in Virus Research, 2012, 83, 73-121.	2.1	274
125	Potential of Bacteriophages and Their Lysins in the Treatment of MRSA. BioDrugs, 2011, 25, 347-355.	4.6	23
126	The Phage Therapy Paradigm: Prêt-Ã-Porter or Sur-mesure?. Pharmaceutical Research, 2011, 28, 934-937.	3.5	249

8

Andrzej Górski

#	Article	IF	CITATIONS
127	Bacteriophages and cancer. Archives of Microbiology, 2010, 192, 315-320.	2.2	53
128	Prophylactic effect of bacteriophages on mice subjected to chemotherapy-induced immunosuppression and bone marrow transplant upon infection with Staphylococcus aureus. Medical Microbiology and Immunology, 2010, 199, 71-79.	4.8	21
129	The effects of staphylococcal bacteriophage lysates on cancer cells in vitro. Clinical and Experimental Medicine, 2010, 10, 81-85.	3.6	7
130	The perspectives of the application of phage therapy in chronic bacterial prostatitis. FEMS Immunology and Medical Microbiology, 2010, 60, 99-112.	2.7	51
131	Fusion to cell-penetrating peptides will enable lytic enzymes to kill intracellular bacteria. Medical Hypotheses, 2010, 74, 164-166.	1.5	18
132	The Effects of T4 and A3/R Phage Preparations on Whole-Blood Monocyte and Neutrophil Respiratory Burst. Viral Immunology, 2010, 23, 541-544.	1.3	21
133	The effect of bacteriophages T4 and HAP1 on in vitro melanoma migration. BMC Microbiology, 2009, 9, 13.	3.3	16
134	Effects of prophylactic administration of bacteriophages to immunosuppressed mice infected with Staphylococcus aureus. BMC Microbiology, 2009, 9, 169.	3.3	39
135	Bacteriophage interactions with phagocytes and their potential significance in experimental therapy. Clinical and Experimental Medicine, 2009, 9, 93-100.	3.6	33
136	A retrospective analysis of changes in inflammatory markers in patients treated with bacterial viruses. Clinical and Experimental Medicine, 2009, 9, 303-312.	3.6	53
137	Eradication of Enterococcus faecalis by phage therapy in chronic bacterial prostatitis — case report. Folia Microbiologica, 2009, 54, 457-461.	2.3	78
138	The Potential of Phage Therapy in Bacterial Infections of the Eye. Ophthalmologica, 2009, 223, 162-165.	1.9	26
139	Antitumor effect of combined treatment of mice with cytostatic agents and bacteriophage T4. Anticancer Research, 2009, 29, 2361-70.	1.1	4
140	My remembrance of Professor Tadeusz OrÅ,owski. , 2009, 119, 289-91.		0
141	Bacteriophage therapy for the treatment of infections. Current Opinion in Investigational Drugs, 2009, 10, 766-74.	2.3	79
142	Bacteriophages support anti-tumor response initiated by DC-based vaccine against murine transplantable colon carcinoma. Immunology Letters, 2008, 116, 24-32.	2.5	40
143	Bacteriophage preparation inhibition of reactive oxygen species generation by endotoxin-stimulated polymorphonuclear leukocytes. Virus Research, 2008, 131, 233-242.	2.2	78
144	Is phage therapy acceptable in the immunocompromised host?. International Journal of Infectious Diseases, 2008, 12, 466-471.	3.3	66

#	Article	IF	CITATIONS
145	The concerted action of lactoferrin and bacteriophages in the clearance of bacteria in sublethally infected mice. Postepy Higieny I Medycyny Doswiadczalnej, 2008, 62, 42-6.	0.1	7
146	Bacteriophage therapy in children: facts and prospects. Medical Science Monitor, 2008, 14, RA126-32.	1.1	23
147	Hoc protein regulates the biological effects of T4 phage in mammals. Archives of Microbiology, 2007, 187, 489-498.	2.2	47
148	Phage therapy of staphylococcal infections (including MRSA) may be less expensive than antibiotic treatment. Postepy Higieny I Medycyny Doswiadczalnej, 2007, 61, 461-5.	0.1	43
149	Bacteriophage Endolysins as a Novel Class of Antibacterial Agents. Experimental Biology and Medicine, 2006, 231, 366-377.	2.4	271
150	Bacteriophage translocation. FEMS Immunology and Medical Microbiology, 2006, 46, 313-319.	2.7	192
151	Effects of bacteriophages on free radical production and phagocytic functions. Medical Microbiology and Immunology, 2006, 195, 143-150.	4.8	81
152	Successful eradication of methicillin-resistantStaphylococcus aureus (MRSA) intestinal carrier status in a healthcare worker — Case report. Folia Microbiologica, 2006, 51, 236-238.	2.3	57
153	The responsible conduct of basic and clinical research. Science and Engineering Ethics, 2006, 12, 3-4.	2.9	0
154	The potential role of endogenous bacteriophages in controlling invading pathogens. Cellular and Molecular Life Sciences, 2005, 62, 511-519.	5.4	137
155	The ethics of intellectual property rights in biomedicine and biotechnology: An introduction. Science and Engineering Ethics, 2005, 11, 4-6.	2.9	1
156	Activity of Bacteriophages in Murine Tumor Models Depends on the Route of Phage Administration. Oncology Research, 2005, 15, 183-187.	1.5	16
157	Bacterial viruses against viruses pathogenic for man?. Virus Research, 2005, 110, 1-8.	2.2	38
158	Nec Soli Cedit (article dedicated to Professor Ludwik Hirszfeld). Postepy Higieny I Medycyny Doswiadczalnej, 2005, 59, 570-2.	0.1	1
159	Introduction to the proceedings of an international conference Placebo: Its action and place in health research today Warsaw, Poland, 12–13 April, 2003. Science and Engineering Ethics, 2004, 10, 3-4.	2.9	0
160	Placebo: its action and place in health research today. Science and Engineering Ethics, 2004, 10, 3-4.	2.9	0
161	Preparation of endotoxin-free bacteriophages. Cellular and Molecular Biology Letters, 2004, 9, 253-9.	7.0	72
162	Anticancer activity of bacteriophage T4 and its mutant HAP1 in mouse experimental tumour models. Anticancer Research, 2004, 24, 3991-5.	1.1	34

#	Article	IF	CITATIONS
163	Bacteriophages as an efficient therapy for antibiotic-resistant septicemia in man. Transplantation Proceedings, 2003, 35, 1385-1386.	0.6	86
164	New insights into the possible role of bacteriophages in host defense and disease. Medical Immunology, 2003, 2, 2.	2.1	68
165	Bacteriophages provide regulatory signals in mitogen-induced murine splenocyte proliferation. Cellular and Molecular Biology Letters, 2003, 8, 699-711.	7.0	15
166	Extracellular matrix proteins dependent apoptosis of T Cells in women with a history of recurrent spontaneous abortion. American Journal of Reproductive Immunology, 2002, 48, 151-151.	1.2	0
167	Enhanced T cells interactions with extracellular matrix proteins in infertile women with endometriosis. Immunology Letters, 2002, 81, 65-70.	2.5	9
168	Effect of phage therapy on the turnover and function of peripheral neutrophils. FEMS Immunology and Medical Microbiology, 2002, 34, 135-138.	2.7	37
169	Effect of phage therapy on the turnover and function of peripheral neutrophils. FEMS Immunology and Medical Microbiology, 2002, 34, 135-138.	2.7	1
170	Low-dose heparin: a novel approach in immunosuppression. Transplant International, 1994, 7, 567-569.	1.6	6
171	Immunomodulatory action of human recombinant erythropoietin in man. Immunology Letters, 1993, 35, 271-275.	2.5	25
172	Immunomodulating activity of heparin. FASEB Journal, 1991, 5, 2287-2291.	0.5	58