
Chris San Marchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2808054/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Fe–Ni–Cr–H interatomic potential and predictions of hydrogen-affected stacking fault energies in austenitic stainless steels. International Journal of Hydrogen Energy, 2022, 47, 651-665.	7.1	19
2	Slip transmission and voiding during slip band Intersections in Fe70Ni10Cr20 stainless steel. Scripta Materialia, 2022, 220, 114925.	5.2	2
3	Effect of microstructural and environmental variables on ductility of austenitic stainless steels. International Journal of Hydrogen Energy, 2021, 46, 12338-12347.	7.1	17
4	Microstructural development in DED stainless steels: applying welding models to elucidate the impact of processing and alloy composition. Journal of Materials Science, 2021, 56, 762-780.	3.7	22
5	Interrogating the Effects of Hydrogen on the Behavior of Planar Deformation Bands in Austenitic Stainless Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 1516-1525.	2.2	9
6	Tritium embrittlement of austenitic stainless-steel tubing at low helium contents. Fusion Engineering and Design, 2021, 168, 112413.	1.9	1
7	Three-dimensional Analysis of Materials at Multiple Length Scales. Microscopy and Microanalysis, 2020, 26, 1680-1682.	0.4	Ο
8	Stacking Fault Energy Based Alloy Screening for Hydrogen Compatibility. Jom, 2020, 72, 1982-1992.	1.9	9
9	Fatigue and Fracture Behavior of Additively Manufactured Austenitic Stainless Steel. , 2020, , 381-398.		1
10	Contribution of Microstructural Features at Various Length Scales to the Strength of Additively Manufactured Austenitic Stainless Steels. Microscopy and Microanalysis, 2019, 25, 2574-2575.	0.4	0
11	Strengthening mechanisms in directed energy deposited austenitic stainless steel. Acta Materialia, 2019, 164, 728-740.	7.9	171
12	Effects of Extreme Hydrogen Environments on the Fracture and Fatigue Behavior of Additively Manufactured Stainless Steels. , 2019, , .		4
13	Technical Basis for Master Curve for Fatigue Crack Growth of Ferritic Steels in High-Pressure Gaseous Hydrogen in ASME Section VIII-3 Code. , 2019, , .		3
14	Evaluating the Resistance of Austenitic Stainless Steel Welds to Hydrogen Embrittlement. , 2019, , .		0
15	Anomalous Annealing Response of Directed Energy Deposited Type 304L Austenitic Stainless Steel. Jom, 2018, 70, 358-363.	1.9	27
16	Global Harmonization of Fatigue Life Testing in Gaseous Hydrogen. , 2018, , .		3
17	Oxygen Impurity Effects on Hydrogen Assisted Fatigue and Fracture of X100 Pipeline Steel. , 2018, , .		3
18	Enhancing safety of hydrogen containment components through materials testing under in-service conditions. International Journal of Hydrogen Energy, 2017, 42, 7314-7321.	7.1	27

#	Article	IF	CITATIONS
19	Overview of the DOE hydrogen safety, codes and standards program, part 3: Advances in research and development to enhance the scientific basis for hydrogen regulations, codes and standards. International Journal of Hydrogen Energy, 2017, 42, 7263-7274.	7.1	61
20	Orientation Effects on Fatigue Behavior of Additively Manufactured Stainless Steel. , 2017, , .		8
21	Temperature Effects on Fracture Thresholds of Hydrogen Precharged Stainless Steel Welds. , 2017, , .		2
22	Notched Fatigue of Austentic Alloys in Gaseous Hydrogen. , 2017, , .		1
23	Scanning Kelvin Probe Force Microscopy Study of Hydrogen Distribution and Evolution in Duplex Stainless Steel. , 2017, , .		0
24	Effect of Gaseous Hydrogen Charging on Nanohardness of Austenitic Stainless Steels. , 2016, , .		1
25	Comparison of Internal and External Hydrogen on Fatigue-Life of Austenitic Stainless Steels. , 2016, , .		5
26	Behaviour of Polymers in High Pressure Environments as Applicable to the Hydrogen Infrastructure. , 2016, , .		5
27	Microstructure, deformation mechanisms and influence of hydrogen on tensile properties of the Co based super alloy DIN 2.4711/UNS N30003. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 662, 36-45.	5.6	2
28	Effects of Low Temperature on Hydrogen-Assisted Crack Growth in Forged 304L Austenitic Stainless Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 4334-4350.	2.2	16
29	Effects of microstructure banding on hydrogen assisted fatigue crack growth in X65 pipeline steels. International Journal of Fatigue, 2016, 82, 497-504.	5.7	83
30	Hydrogen sorption characteristics of nanostructured Pd–10Rh processed by cryomilling. Acta Materialia, 2015, 82, 41-50.	7.9	10
31	Measurement of Fracture Properties for Ferritic Steel in High-Pressure Hydrogen Gas. , 2014, , .		1
32	Micromechanisms of Hydrogen-Assisted Cracking in Super Duplex Stainless Steel Investigated by Scanning Probe Microscopy. , 2014, , .		2
33	Comparison of Stainless Steels for High-Pressure Hydrogen Service. , 2014, , .		Ο
34	Fabrication and Testing of Electron Beam Welded Alloy AA2219 Aluminum Pressure Vessels for High-Pressure Hydrogen Service. , 2014, , .		3
35	Development of methods for evaluating hydrogen compatibility and suitability. International Journal of Hydrogen Energy, 2014, 39, 20434-20439.	7.1	45
36	Hydrogen compatibility of austenitic stainless steel tubing and orbital tube welds. International Journal of Hydrogen Energy, 2014, 39, 20585-20590.	7.1	27

CHRIS SAN MARCHI

#	Article	IF	CITATIONS
37	Elucidating the variables affecting accelerated fatigue crack growth of steels in hydrogen gas with low oxygen concentrations. Acta Materialia, 2013, 61, 6153-6170.	7.9	129
38	The Relationship Between Crack-Tip Strain and Subcritical Cracking Thresholds for Steels in High-Pressure Hydrogen Gas. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 248-269.	2.2	69
39	Effect of low temperature on hydrogen-assisted crack propagation in 304L/308L austenitic stainless steel fusion welds. Corrosion Science, 2013, 77, 210-221.	6.6	19
40	Scaling of conductivity and Young's modulus in replicated microcellular materials. Journal of Materials Science, 2013, 48, 8140-8146.	3.7	8
41	Hydrogen-Assisted Twin Boundary Fracture of Type 304 Austenitic Stainless Steel at Low Temperature Investigated by Scanning Probe Microscopy. , 2013, , .		2
42	Hydrogen-Assisted Fracture of Type 316L Tubing and Orbital Welds. , 2013, , .		1
43	Measurement of Fatigue Crack Growth Rates for SA-372 Gr. J Steel in 100 MPa Hydrogen Gas Following Article KD-10. , 2013, , .		3
44	Hydrogen embrittlement of stainless steels and their welds. , 2012, , 592-623.		5
45	Pressure Cycling of Steel Pressure Vessels With Gaseous Hydrogen. , 2012, , .		10
46	Tritium Barriers and Tritium Diffusion in Fusion Reactors. , 2012, , 511-549.		98
47	Hydrogen-assisted crack propagation in 304L/308L and 21Cr–6Ni–9Mn/308L austenitic stainless steel fusion welds. Corrosion Science, 2012, 60, 136-144.	6.6	40
48	Hydrogen environment embrittlement of stable austenitic steels. International Journal of Hydrogen Energy, 2012, 37, 16231-16246.	7.1	164
49	Fracture Resistance and Fatigue Crack Growth of X80 Pipeline Steel in Gaseous Hydrogen. , 2011, , .		13
50	Characterization of the Ne–Al scattering potential using low energy ion scattering maps. Nuclear Instruments & Methods in Physics Research B, 2011, 269, 1229-1233.	1.4	2
51	Fatigue Crack Growth of Structural Metals for Hydrogen Service. , 2011, , .		1
52	Multi-scale Investigation of the Hydrogen-Assisted Failure of X65 Pipeline Steel. Microscopy and Microanalysis, 2010, 16, 778-779.	0.4	0
53	Fracture and Fatigue Tolerant Steel Pressure Vessels for Gaseous Hydrogen. , 2010, , .		8
54	Effects of Strength and Microstructure on Hydrogen-Assisted Crack Propagation in 22Cr-13Ni-5Mn Stainless Steel Forgings. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 3348-3357.	2.2	5

#	Article	IF	CITATIONS
55	On the physical differences between tensile testing of type 304 and 316 austenitic stainless steels with internal hydrogen and in external hydrogen. International Journal of Hydrogen Energy, 2010, 35, 9736-9745.	7.1	155
56	Microstructure and Mechanical Property Performance of Commercial Grade API Pipeline Steels in High Pressure Gaseous Hydrogen. , 2010, , .		15
57	Fracture and Fatigue of Commercial Grade API Pipeline Steels in Gaseous Hydrogen. , 2010, , .		22
58	The role of localized deformation in hydrogen-assisted crack propagation in 21Cr–6Ni–9Mn stainless steel. Acta Materialia, 2009, 57, 3795-3809.	7.9	92
59	STRUCTURAL-METALS CONSIDERATIONS FOR THE CONTAINMENT OF HIGH-PRESSURE HYDROGEN GAS. , 2009, , .		0
60	Solubility of hydrogen and its isotopes in metals from mixed gases. Journal of Nuclear Materials, 2008, 372, 421-425.	2.7	9
61	Effects of alloy composition and strain hardening on tensile fracture of hydrogen-precharged type 316 stainless steels. International Journal of Hydrogen Energy, 2008, 33, 889-904.	7.1	206
62	Effect of laser peening on the hydrogen compatibility of corrosion-resistant nickel alloy. Scripta Materialia, 2008, 58, 782-785.	5.2	25
63	Thermodynamics of Gaseous Hydrogen and Hydrogen Transport in Metals. Materials Research Society Symposia Proceedings, 2008, 1098, 1.	0.1	4
64	Effect of High-Pressure Hydrogen Gas on Fracture of Austenitic Steels. Journal of Pressure Vessel Technology, Transactions of the ASME, 2008, 130, .	0.6	24
65	Hydrogen containment materials. , 2008, , 51-81.		1
66	Measurement of Sustained-Load Cracking Thresholds for Steels in Hydrogen Delivery and Storage. , 2008, , .		5
67	Hydrogen Assisted Fracture of Type 316 Stainless Steel at Sub-Ambient Temperature. , 2008, , .		0
68	Permeability, solubility and diffusivity of hydrogen isotopes in stainless steels at high gas pressures. International Journal of Hydrogen Energy, 2007, 32, 100-116.	7.1	377
69	Mechanical Properties of Super Duplex Stainless Steel 2507 after Gas Phase Thermal Precharging with Hydrogen. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 2763-2775.	2.2	49
70	Microstructural Tailoring of Open-Pore Microcellular Aluminium by Replication Processing. Materials Science Forum, 2006, 512, 281-288.	0.3	14
71	Microstructure characterization in cryomilled Al 5083. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 430, 230-241.	5.6	66

Fracture of Nanocrystalline Aluminum. , 2006, , 669-670.

2

CHRIS SAN MARCHI

#	Article	IF	CITATIONS
73	Effect of High-Pressure Hydrogen Gas on Fracture of Austenitic Steels. , 2005, , 483.		6
74	Structure-property relationships of Au films electrodeposited on Ni. Materials Research Society Symposia Proceedings, 2004, 821, 79.	0.1	0
75	Tensile Behaviour of Replicated Aluminium Foams. Advanced Engineering Materials, 2004, 6, 444-447.	3.5	30
76	Uniaxial deformation of open-cell aluminum foam: the role of internal damage. Acta Materialia, 2004, 52, 2895-2902.	7.9	93
77	Alumina–aluminum interpenetrating-phase composites with three-dimensional periodic architecture. Scripta Materialia, 2003, 49, 861-866.	5.2	120
78	Corrigendum to: on the tensile behaviour of infiltrated alumina particle reinforced aluminium composites. Acta Materialia, 2003, 51, 6493-6496.	7.9	7
79	Influence of heat treatment and particle shape on mechanical properties of infiltrated Al2O3particle reinforced Al-2 wt-%Cu. Materials Science and Technology, 2002, 18, 1461-1470.	1.6	19
80	Melt Infiltration Processing of Foams Using Glass-Forming Alloys. Materials Research Society Symposia Proceedings, 2002, 754, 1.	0.1	2
81	Quasistatic and dynamic compression of aluminum-oxide particle reinforced pure aluminum. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 337, 202-211.	5.6	72
82	Effect of reaction on the tensile behavior of infiltrated boron carbide–aluminum composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 337, 264-273.	5.6	72
83	"Assessment of Metal Matrix Composites for Innovations―— intermediate report of a European Thematic Network. Composites Part A: Applied Science and Manufacturing, 2001, 32, 1161-1166.	7.6	18
84	Deformation of open-cell aluminum foam. Acta Materialia, 2001, 49, 3959-3969.	7.9	180
85	Quantification of microdamage phenomena during tensile straining of high volume fraction particle reinforced aluminium. Acta Materialia, 2001, 49, 497-505.	7.9	68
86	Influence of damage on the tensile behaviour of pure aluminium reinforced with ≥40 vol. pct alumina particles. Acta Materialia, 2001, 49, 3699-3709.	7.9	86
87	The effect of gravity on solution-reprecipitation during liquid phase sintering. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2000, 31, 397-400.	2.2	7
88	On the use of Considere's criterion in tensile testing of materials which accumulate internal damage. Scripta Materialia, 1999, 41, 549-551.	5.2	33
89	Reactive infiltration processing of aluminum-nickel intermetallic compounds. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1998, 29, 2819-2828.	2.2	19
90	Thermal expansion responses of pressure infiltrated SiC/Al metal-matrix composites. Journal of Materials Science, 1997, 32, 2131-2140.	3.7	73

CHRIS SAN MARCHI

#	Article	IF	CITATIONS
91	Numerical analysis of the deformation and solidification of a single droplet impinging onto a flat substrate. Journal of Materials Science, 1993, 28, 3313-3321.	3.7	67
92	Effects of High-Pressure Gaseous Hydrogen on Structural Metals. , 0, , .		7
93	Microstructural Tailoring of Open-Pore Microcellular Aluminium by Replication Processing. Materials Science Forum, 0, , 281-288.	0.3	3
94	Thermography Assisted Fatigue Testing. , 0, , 193-200.		0