
## Michael L Whitfield

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2807913/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Identification of Genes Periodically Expressed in the Human Cell Cycle and Their Expression in Tumors.<br>Molecular Biology of the Cell, 2002, 13, 1977-2000.                                                                              | 2.1  | 1,352     |
| 2  | Common markers of proliferation. Nature Reviews Cancer, 2006, 6, 99-106.                                                                                                                                                                   | 28.4 | 522       |
| 3  | Systemic and cell type-specific gene expression patterns in scleroderma skin. Proceedings of the<br>National Academy of Sciences of the United States of America, 2003, 100, 12319-12324.                                                  | 7.1  | 385       |
| 4  | Molecular Subsets in the Gene Expression Signatures of Scleroderma Skin. PLoS ONE, 2008, 3, e2696.                                                                                                                                         | 2.5  | 334       |
| 5  | Shared and distinct mechanisms of fibrosis. Nature Reviews Rheumatology, 2019, 15, 705-730.                                                                                                                                                | 8.0  | 331       |
| 6  | Fresolimumab treatment decreases biomarkers and improves clinical symptoms in systemic sclerosis patients. Journal of Clinical Investigation, 2015, 125, 2795-2807.                                                                        | 8.2  | 271       |
| 7  | Myofibroblasts in Murine Cutaneous Fibrosis Originate From Adiponectinâ€Positive Intradermal<br>Progenitors. Arthritis and Rheumatology, 2015, 67, 1062-1073.                                                                              | 5.6  | 254       |
| 8  | The Pathogenesis of Systemic Sclerosis. Annual Review of Pathology: Mechanisms of Disease, 2011, 6, 509-537.                                                                                                                               | 22.4 | 247       |
| 9  | Wnt/β atenin signaling is hyperactivated in systemic sclerosis and induces Smadâ€dependent fibrotic<br>responses in mesenchymal cells. Arthritis and Rheumatism, 2012, 64, 2734-2745.                                                      | 6.7  | 193       |
| 10 | Abatacept in Early Diffuse Cutaneous Systemic Sclerosis: Results of a Phase <scp>II</scp><br>Investigatorâ€Initiated, Multicenter, Doubleâ€Blind, Randomized, Placeboâ€Controlled Trial. Arthritis and<br>Rheumatology, 2020, 72, 125-136. | 5.6  | 163       |
| 11 | PPARÎ <sup>3</sup> Downregulation by TGFß in Fibroblast and Impaired Expression and Function in Systemic<br>Sclerosis: A Novel Mechanism for Progressive Fibrogenesis. PLoS ONE, 2010, 5, e13778.                                          | 2.5  | 158       |
| 12 | Molecular Signatures in Skin Associated with Clinical Improvement during Mycophenolate Treatment<br>in Systemic Sclerosis. Journal of Investigative Dermatology, 2013, 133, 1979-1989.                                                     | 0.7  | 150       |
| 13 | Universal Reference RNA as a standard for microarray experiments. BMC Genomics, 2004, 5, 20.                                                                                                                                               | 2.8  | 140       |
| 14 | Intrinsic Gene Expression Subsets of Diffuse Cutaneous Systemic Sclerosis Are Stable in Serial Skin<br>Biopsies. Journal of Investigative Dermatology, 2012, 132, 1363-1373.                                                               | 0.7  | 138       |
| 15 | Limited Systemic Sclerosis Patients with Pulmonary Arterial Hypertension Show Biomarkers of Inflammation and Vascular Injury. PLoS ONE, 2010, 5, e12106.                                                                                   | 2.5  | 133       |
| 16 | A TGFβ-Responsive Gene Signature Is Associated with a Subset of Diffuse Scleroderma with Increased<br>Disease Severity. Journal of Investigative Dermatology, 2010, 130, 694-705.                                                          | 0.7  | 132       |
| 17 | Interferon and alternative activation of monocyte/macrophages in systemic sclerosis-associated pulmonary arterial hypertension. Arthritis and Rheumatism, 2011, 63, 1718-1728.                                                             | 6.7  | 125       |
| 18 | Molecular framework for response to imatinib mesylate in systemic sclerosis. Arthritis and<br>Rheumatism, 2009, 60, 584-591.                                                                                                               | 6.7  | 117       |

| #  | Article                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Systems Level Analysis of Systemic Sclerosis Shows a Network of Immune and Profibrotic Pathways Connected with Genetic Polymorphisms. PLoS Computational Biology, 2015, 11, e1004005.                                                                                            | 3.2 | 115       |
| 20 | Gene expression changes reflect clinical response in a placebo-controlled randomized trial of<br>abatacept in patients with diffuse cutaneous systemic sclerosis. Arthritis Research and Therapy, 2015,<br>17, 159.                                                              | 3.5 | 104       |
| 21 | Belimumab for the Treatment of Early Diffuse Systemic Sclerosis. Arthritis and Rheumatology, 2018, 70, 308-316.                                                                                                                                                                  | 5.6 | 98        |
| 22 | Global skin gene expression analysis of early diffuse cutaneous systemic sclerosis shows a prominent innate and adaptive inflammatory profile. Annals of the Rheumatic Diseases, 2020, 79, 379-386.                                                                              | 0.9 | 97        |
| 23 | A Longitudinal Biomarker for the Extent of Skin Disease in Patients With Diffuse Cutaneous Systemic<br>Sclerosis. Arthritis and Rheumatology, 2015, 67, 3004-3015.                                                                                                               | 5.6 | 95        |
| 24 | A novel multi-network approach reveals tissue-specific cellular modulators of fibrosis in systemic sclerosis. Genome Medicine, 2017, 9, 27.                                                                                                                                      | 8.2 | 92        |
| 25 | Nilotinib (Tasignaâ,,¢) in the treatment of early diffuse systemic sclerosis: an open-label, pilot clinical<br>trial. Arthritis Research and Therapy, 2015, 17, 213.                                                                                                             | 3.5 | 83        |
| 26 | Levels of adiponectin, a marker for PPAR-gamma activity, correlate with skin fibrosis in systemic sclerosis: potential utility as a biomarker?. Arthritis Research and Therapy, 2012, 14, R102.                                                                                  | 3.5 | 81        |
| 27 | Transforming growth factor-beta in systemic sclerosis scleroderma. Frontiers in Bioscience -<br>Scholar, 2009, S1, 226-235.                                                                                                                                                      | 2.1 | 79        |
| 28 | Interspecies Comparison of Human and Murine Scleroderma Reveals IL-13 and CCL2 as Disease<br>Subset-Specific Targets. American Journal of Pathology, 2012, 180, 1080-1094.                                                                                                       | 3.8 | 78        |
| 29 | Safety and Efficacy of Lenabasum in a Phase II, Randomized, Placeboâ€Controlled Trial in Adults With<br>Systemic Sclerosis. Arthritis and Rheumatology, 2020, 72, 1350-1360.                                                                                                     | 5.6 | 67        |
| 30 | Experimentally-Derived Fibroblast Gene Signatures Identify Molecular Pathways Associated with<br>Distinct Subsets of Systemic Sclerosis Patients in Three Independent Cohorts. PLoS ONE, 2015, 10,<br>e0114017.                                                                  | 2.5 | 62        |
| 31 | Postâ€epidemic eosinophilia–myalgia syndrome associated with Lâ€tryptophan. Arthritis and Rheumatism,<br>2011, 63, 3633-3639.                                                                                                                                                    | 6.7 | 61        |
| 32 | Novel lung imaging biomarkers and skin gene expression subsetting in dasatinib treatment of systemic sclerosis-associated interstitial lung disease. PLoS ONE, 2017, 12, e0187580.                                                                                               | 2.5 | 58        |
| 33 | Integrated, multicohort analysis of systemic sclerosis identifies robust transcriptional signature of disease severity. JCI Insight, 2016, 1, e89073.                                                                                                                            | 5.0 | 57        |
| 34 | A Machine Learning Classifier for Assigning Individual Patients With Systemic Sclerosis to Intrinsic<br>Molecular Subsets. Arthritis and Rheumatology, 2019, 71, 1701-1710.                                                                                                      | 5.6 | 56        |
| 35 | Increased Expression of Endoplasmic Reticulum Stress and Unfolded Protein Response Genes in<br>Peripheral Blood Mononuclear Cells From Patients With Limited Cutaneous Systemic Sclerosis and<br>Pulmonary Arterial Hypertension. Arthritis and Rheumatism, 2013, 65, 1357-1366. | 6.7 | 54        |
| 36 | Feature specific quantile normalization enables cross-platform classification of molecular subtypes using gene expression data. Bioinformatics, 2018, 34, 1868-1874.                                                                                                             | 4.1 | 53        |

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Molecular characterization of systemic sclerosis esophageal pathology identifies inflammatory and proliferative signatures. Arthritis Research and Therapy, 2015, 17, 194.                                                | 3.5 | 48        |
| 38 | Antagonistic Effect of the Matricellular Signaling Protein CCN3 on TGF-β- and Wnt-Mediated<br>Fibrillinogenesis in Systemic Sclerosis and Marfan Syndrome. Journal of Investigative Dermatology,<br>2010, 130, 1514-1523. | 0.7 | 47        |
| 39 | Profibrotic Activation of Human Macrophages in Systemic Sclerosis. Arthritis and Rheumatology, 2020, 72, 1160-1169.                                                                                                       | 5.6 | 47        |
| 40 | Downregulation of miR-193b in systemic sclerosis regulates the proliferative vasculopathy by<br>urokinase-type plasminogen activator expression. Annals of the Rheumatic Diseases, 2016, 75, 303-310.                     | 0.9 | 45        |
| 41 | Mycophenolate Mofetil Treatment of Systemic Sclerosis Reduces Myeloid Cell Numbers and Attenuates<br>the Inflammatory Gene Signature in Skin. Journal of Investigative Dermatology, 2018, 138, 1301-1310.                 | 0.7 | 45        |
| 42 | Egr-1 Induces a Profibrotic Injury/Repair Gene Program Associated with Systemic Sclerosis. PLoS ONE, 2011, 6, e23082.                                                                                                     | 2.5 | 42        |
| 43 | High Rhodotorula Sequences in Skin Transcriptome of Patients with Diffuse Systemic Sclerosis.<br>Journal of Investigative Dermatology, 2014, 134, 2138-2145.                                                              | 0.7 | 37        |
| 44 | Antisense Long Non-Coding RNAs Are Deregulated in Skin Tissue of Patients withÂSystemic Sclerosis.<br>Journal of Investigative Dermatology, 2018, 138, 826-835.                                                           | 0.7 | 37        |
| 45 | Identification of Optimal Mouse Models of Systemic Sclerosis by Interspecies Comparative Genomics.<br>Arthritis and Rheumatology, 2016, 68, 2003-2015.                                                                    | 5.6 | 35        |
| 46 | Safety and efficacy of abatacept in early diffuse cutaneous systemic sclerosis (ASSET): open-label extension of a phase 2, double-blind randomised trial. Lancet Rheumatology, The, 2020, 2, e743-e753.                   | 3.9 | 34        |
| 47 | The Tsk2/+ Mouse Fibrotic Phenotype Is Due to a Gain-of-Function Mutation in the PIIINP Segment of the Col3a1 Gene. Journal of Investigative Dermatology, 2015, 135, 718-727.                                             | 0.7 | 30        |
| 48 | Machine learning predicts stem cell transplant response in severe scleroderma. Annals of the<br>Rheumatic Diseases, 2020, 79, 1608-1615.                                                                                  | 0.9 | 29        |
| 49 | Capturing the heterogeneity in systemic sclerosis with genome-wide expression profiling. Expert<br>Review of Clinical Immunology, 2011, 7, 463-473.                                                                       | 3.0 | 27        |
| 50 | Current and Future Outlook on Disease Modification and Defining Low Disease Activity in Systemic Sclerosis. Arthritis and Rheumatology, 2020, 72, 1049-1058.                                                              | 5.6 | 27        |
| 51 | Editorial: Plasma and B Cell Gene Signatures: Quantitative Targeting and Monitoring of B<br>Cell–Depleting Therapies in Autoimmune Diseases in the Genomic Era. Arthritis and Rheumatology,<br>2014, 66, 10-14.           | 5.6 | 26        |
| 52 | Molecular stratification and precision medicine in systemic sclerosis from genomic and proteomic data. Current Opinion in Rheumatology, 2016, 28, 83-88.                                                                  | 4.3 | 25        |
| 53 | Microbiome dysbiosis is associated with disease duration and increased inflammatory gene expression in systemic sclerosis skin. Arthritis Research and Therapy, 2019, 21, 49.                                             | 3.5 | 25        |
| 54 | Gene expression profiling offers insights into the role of innate immune signaling in SSc. Seminars in<br>Immunopathology, 2015, 37, 501-509.                                                                             | 6.1 | 24        |

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A Functional Genomic Meta-Analysis of Clinical Trials in Systemic Sclerosis: TowardÂPrecision<br>Medicine and Combination Therapy. Journal of Investigative Dermatology, 2017, 137, 1033-1041.                                 | 0.7 | 24        |
| 56 | Systemic Sclerosis Dermal Fibroblasts Induce Cutaneous Fibrosis Through Lysyl Oxidase–like 4: New<br>Evidence From Threeâ€Dimensional Skinâ€like Tissues. Arthritis and Rheumatology, 2020, 72, 791-801.                       | 5.6 | 23        |
| 57 | Lysyl oxidase enzymes mediate TGF-β1-induced fibrotic phenotypes in human skin-like tissues. Laboratory<br>Investigation, 2019, 99, 514-527.                                                                                   | 3.7 | 22        |
| 58 | Machine learning integration of scleroderma histology and gene expression identifies fibroblast polarisation as a hallmark of clinical severity and improvement. Annals of the Rheumatic Diseases, 2021, 80, 228-237.          | 0.9 | 20        |
| 59 | Stress granules and RNA processing bodies are novel autoantibody targets in systemic sclerosis.<br>Arthritis Research and Therapy, 2016, 18, 27.                                                                               | 3.5 | 16        |
| 60 | CDDO-Me Alters the Tumor Microenvironment in Estrogen Receptor Negative Breast Cancer. Scientific<br>Reports, 2020, 10, 6560.                                                                                                  | 3.3 | 16        |
| 61 | Scleroderma gene expression and pathway signatures. Current Rheumatology Reports, 2008, 10, 205-211.                                                                                                                           | 4.7 | 14        |
| 62 | Limited cutaneous systemic sclerosis skin demonstrates distinct molecular subsets separated by a cardiovascular development gene expression signature. Arthritis Research and Therapy, 2017, 19, 156.                          | 3.5 | 14        |
| 63 | The role of <i>Ifng</i> in alterations in liver gene expression in a mouse model of fulminant autoimmune hepatitis. Liver International, 2009, 29, 1307-1315.                                                                  | 3.9 | 13        |
| 64 | Patients with systemic sclerosis-associated pulmonary arterial hypertension express a genomic signature distinct from patients with interstitial lung disease. Journal of Scleroderma and Related Disorders, 2018, 3, 242-248. | 1.7 | 12        |
| 65 | The Mechanistic Implications of Gene Expression Studies in SSc: Insights From Systems Biology.<br>Current Treatment Options in Rheumatology, 2017, 3, 181-192.                                                                 | 1.4 | 7         |
| 66 | Molecular "omic―signatures in systemic sclerosis. European Journal of Rheumatology, 2020, 7, 173-180.                                                                                                                          | 0.6 | 6         |
| 67 | A case of recalcitrant linear morphea responding to subcutaneous abatacept. Journal of Scleroderma and Related Disorders, 2021, 6, 194-198.                                                                                    | 1.7 | 5         |
| 68 | Selfâ€Assembled Human Skin Equivalents Model Macrophage Activation of Cutaneous Fibrogenesis in<br>Systemic Sclerosis. Arthritis and Rheumatology, 2022, 74, 1245-1256.                                                        | 5.6 | 5         |
| 69 | A genomic meta-analysis of clinical variables and their association with intrinsic molecular subsets in systemic sclerosis. Rheumatology, 0, , .                                                                               | 1.9 | 5         |
| 70 | Clinical and Molecular Findings after Autologous Stem Cell Transplantation or Cyclophosphamide<br>for Scleroderma: Handling Missing Longitudinal Data. Arthritis Care and Research, 2021, , .                                  | 3.4 | 3         |
| 71 | THU0354â€MACHINE LEARNING CLASSIFICATION OF SKIN GENE EXPRESSION IDENTIFIES A SUBSET OF SYSTEN SCLEROSIS PATIENTS MOST LIKELY TO SHOW CLINICAL IMPROVEMENT IN RESPONSE TO ABATACEPT. , 2019, , .                               | /IC | 2         |
| 72 | Regulator combinations identify systemic sclerosis patients with more severe disease. JCI Insight, 2020, 5, .                                                                                                                  | 5.0 | 2         |

| #  | Article                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Mast cell activation in the systemic sclerosis esophagus. Journal of Scleroderma and Related Disorders, 2021, 6, 77-86.       | 1.7 | 1         |
| 74 | Molecular "omic" signatures in systemic sclerosis. European Journal of Rheumatology, 2020, 7,<br>S173-S180.                   | 0.6 | 1         |
| 75 | Disease Classification Using Molecular Signatures. , 2012, , 71-81.                                                           |     | Ο         |
| 76 | Systems Biology Approaches to Understanding the Pathogenesis of Systemic Sclerosis. , 2017, , 125-129.                        |     | 0         |
| 77 | Moving towards a molecular categorization of autoimmune disease. Nature Reviews Rheumatology, 2021, 17, 193-194.              | 8.0 | 0         |
| 78 | Insights Into Systemic Sclerosis from Gene Expression Profiling. Current Treatment Options in Rheumatology, 2021, 7, 208-221. | 1.4 | 0         |
| 79 | Identification of G1â€Regulated Genes in Normally Cycling Human Cells. FASEB Journal, 2008, 22, 636.4.                        | 0.5 | 0         |
| 80 | Molecular Stratification by Gene Expression as a Paradigm for Precision Medicine in Systemic Sclerosis. , 2017, , 657-670.    |     | 0         |