Romesh R Subramanian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/280787/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Systemic Alanine Glyoxylate Aminotransferase mRNA Improves Glyoxylate Metabolism in a Mouse Model of Primary Hyperoxaluria Type 1. Nucleic Acid Therapeutics, 2019, 29, 104-113.	3.6	12
2	G6PC mRNA Therapy Positively Regulates Fasting Blood Glucose and Decreases Liver Abnormalities in a Mouse Model of Glycogen Storage Disease 1a. Molecular Therapy, 2018, 26, 814-821.	8.2	51
3	Leveraging Rational Protein Engineering to Improve mRNA Therapeutics. Nucleic Acid Therapeutics, 2018, 28, 74-85.	3.6	8
4	Optimization of mRNA untranslated regions for improved expression of therapeutic mRNA. RNA Biology, 2018, 15, 1-7.	3.1	62
5	mRNA treatment produces sustained expression of enzymatically active human ADAMTS13 in mice. Scientific Reports, 2018, 8, 7859.	3.3	17
6	SERPINA1 mRNA as a Treatment for Alpha-1 Antitrypsin Deficiency. Journal of Nucleic Acids, 2018, 2018, 1-7.	1.2	34
7	Arginase I mRNA therapy – a novel approach to rescue arginase 1 enzyme deficiency. RNA Biology, 2018, 15, 914-922.	3.1	37
8	Potential Role of Axonal Chemorepellent Slit2 in Modulating Adventitial Inflammation in a Rat Carotid Artery Balloon Injury Model. Journal of Cardiovascular Pharmacology, 2016, 67, 433-441.	1.9	4
9	Enhancing antisense efficacy with multimers and multi-targeting oligonucleotides (MTOs) using cleavable linkers. Nucleic Acids Research, 2015, 43, 9123-9132.	14.5	19
10	Combination therapy targeting Raf-1 and MEK causes apoptosis of HCT116 colon cancer cells. International Journal of Oncology, 2012, 41, 1855-1862.	3.3	10
11	siRNA Off-Target Effects Can Be Reduced at Concentrations That Match Their Individual Potency. PLoS ONE, 2011, 6, e21503.	2.5	76
12	Development of a sensitive ELISA to quantify apolipoprotein CIII in nonhuman primate serum. Journal of Lipid Research, 2011, 52, 1265-1271.	4.2	3
13	Uptake, Efficacy, and Systemic Distribution of Naked, Inhaled Short Interfering RNA (siRNA) and Locked Nucleic Acid (LNA) Antisense. Molecular Therapy, 2011, 19, 2163-2168.	8.2	84
14	miRNA Alterations Modify Kinase Activation In The IGF-1 Pathway And Correlate With Colorectal Cancer Stage And Progression In Patients. Journal of Cancer, 2011, 2, 490-502.	2.5	9
15	14-3-3η Amplifies Androgen Receptor Actions in Prostate Cancer. Clinical Cancer Research, 2009, 15, 7571-7581.	7.0	13
16	Interaction of apoptosis signal-regulating kinase 1 with isoforms of 14-3-3 proteins. Experimental Cell Research, 2004, 294, 581-591.	2.6	48
17	Human mammary epithelial cell transformation through the activation of phosphatidylinositol 3-kinase. Cancer Cell, 2003, 3, 483-495.	16.8	262
18	DEF-1/ASAP1 Is a GTPase-activating Protein (GAP) for ARF1 That Enhances Cell Motility through a GAP-dependent Mechanism. Journal of Biological Chemistry, 2002, 277, 7962-7969.	3.4	87

#	Article	IF	CITATIONS
19	Functional Conservation of 14-3-3 Isoforms in Inhibiting Bad-Induced Apoptosis. Experimental Cell Research, 2001, 271, 142-151.	2.6	93
20	Protein phosphatase 2A activates the proapoptotic function of BAD in interleukin- 3–dependent lymphoid cells by a mechanism requiring 14-3-3 dissociation. Blood, 2001, 97, 1289-1297.	1.4	137
21	14-3-3 Proteins: Structure, Function, and Regulation. Annual Review of Pharmacology and Toxicology, 2000, 40, 617-647.	9.4	1,427
22	Dietary Correction of Hypercholesterolemia in the Rabbit Normalizes Endothelial Superoxide Anion Production. Circulation, 1995, 92, 898-903.	1.6	145