
Sunil Laxman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2807373/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mycobacterium tuberculosis requires SufT for Fe-S cluster maturation, metabolism, and survival in vivo. PLoS Pathogens, 2022, 18, e1010475.	4.7	7
2	<i>S</i> -Adenosylmethionine–responsive cystathionine β-synthase modulates sulfur metabolism and redox balance in <i>Mycobacterium tuberculosis</i> . Science Advances, 2022, 8, .	10.3	10
3	Cycles, sources, and sinks: Conceptualizing how phosphate balance modulates carbon flux using yeast metabolic networks. ELife, 2021, 10, .	6.0	8
4	The bacterial social network and beyond. Nature Reviews Molecular Cell Biology, 2021, 22, 443-443.	37.0	0
5	Kog1/Raptor mediates metabolic rewiring during nutrient limitation by controlling SNF1/AMPK activity. Science Advances, 2021, 7, .	10.3	9
6	The pentose phosphate pathway and organization of metabolic networks enabling growth programs. Current Opinion in Systems Biology, 2021, 28, 100390.	2.6	10
7	Bend or break: how biochemically versatile molecules enable metabolic division of labor in clonal microbial communities. Genetics, 2021, 219, .	2.9	3
8	Anabolic SIRT4 Exerts Retrograde Control over TORC1 Signaling by Glutamine Sparing in the Mitochondria. Molecular and Cellular Biology, 2020, 40, .	2.3	31
9	tRNA wobble-uridine modifications as amino acid sensors and regulators of cellular metabolic state. Current Genetics, 2020, 66, 475-480.	1.7	16
10	The Rad53CHK1/CHK2-Spt21NPAT and Tel1ATM axes couple glucose tolerance to histone dosage and subtelomeric silencing. Nature Communications, 2020, 11, 4154.	12.8	14
11	Allosteric inhibition of MTHFR prevents futile SAM cycling and maintains nucleotide pools in one-carbon metabolism. Journal of Biological Chemistry, 2020, 295, 16037-16057.	3.4	17
12	Emergence of metabolic heterogeneity in cell populations: lessons from budding yeast. , 2020, , 335-360.		3
13	Resource plasticity-driven carbon-nitrogen budgeting enables specialization and division of labor in a clonal community. ELife, 2020, 9, .	6.0	8
14	Methylated PP2A stabilizes Gcn4 to enable a methionine-induced anabolic program. Journal of Biological Chemistry, 2020, 295, 18390-18405.	3.4	4
15	Genome-scale reconstruction of Gcn4/ATF4 networks driving a growth program. PLoS Genetics, 2020, 16, e1009252.	3.5	4
16	Steady-state and Flux-based Trehalose Estimation as an Indicator of Carbon Flow from Gluconeogenesis or Glycolysis. Bio-protocol, 2020, 10, e3483.	0.4	5
17	Genome-scale reconstruction of Gcn4/ATF4 networks driving a growth program. , 2020, 16, e1009252.		0
18	Genome-scale reconstruction of Gcn4/ATF4 networks driving a growth program. , 2020, 16, e1009252.		0

SUNIL LAXMAN

#	Article	IF	CITATIONS
19	Genome-scale reconstruction of Gcn4/ATF4 networks driving a growth program. , 2020, 16, e1009252.		0
20	Genome-scale reconstruction of Gcn4/ATF4 networks driving a growth program. , 2020, 16, e1009252.		0
21	Methionine at the Heart of Anabolism and Signaling: Perspectives From Budding Yeast. Frontiers in Microbiology, 2019, 10, 2624.	3.5	30
22	The E3 ubiquitin ligase Pib1 regulates effective gluconeogenic shutdown upon glucose availability. Journal of Biological Chemistry, 2019, 294, 17209-17223.	3.4	5
23	A tRNA modification balances carbon and nitrogen metabolism by regulating phosphate homeostasis. ELife, 2019, 8, .	6.0	49
24	Metabolic constraints drive self-organization of specialized cell groups. ELife, 2019, 8, .	6.0	42
25	Methionine coordinates a hierarchically organized anabolic program enabling proliferation. Molecular Biology of the Cell, 2018, 29, 3183-3200.	2.1	36
26	A minimal "push–pull―bistability model explains oscillations between quiescent and proliferative cell states. Molecular Biology of the Cell, 2018, 29, 2243-2258.	2.1	12
27	A versatile LC-MS/MS approach for comprehensive, quantitative analysis of central metabolic pathways. Wellcome Open Research, 2018, 3, 122.	1.8	34
28	Conceptualizing Eukaryotic Metabolic Sensing and Signaling. Journal of the Indian Institute of Science, 2017, 97, 59-77.	1.9	5
29	Thiol trapping and metabolic redistribution of sulfur metabolites enable cells to overcome cysteine overload. Microbial Cell, 2017, 4, 112-126.	3.2	14
30	The glyoxylate shunt is essential for desiccation tolerance in C. elegans and budding yeast. ELife, 2016, 5, .	6.0	64
31	Metabolite Regulation of Nuclear Localization of Carbohydrate-response Element-binding Protein (ChREBP). Journal of Biological Chemistry, 2016, 291, 10515-10527.	3.4	58
32	Decoding the stem cell quiescence cycle – lessons from yeast for regenerative biology. Journal of Cell Science, 2015, 128, 4467-4474.	2.0	45
33	Regulation of Hematopoiesis and Methionine Homeostasis by mTORC1 Inhibitor NPRL2. Cell Reports, 2015, 12, 371-379.	6.4	40
34	Methionine is a signal of amino acid sufficiency that inhibits autophagy through the methylation of PP2A. Autophagy, 2014, 10, 386-387.	9.1	45
35	Npr2 inhibits TORC1 to prevent inappropriate utilization of glutamine for biosynthesis of nitrogen-containing metabolites. Science Signaling, 2014, 7, ra120.	3.6	42
36	Concerted Effort: Oscillations in Global Gene Expression during Nematode Development. Molecular Cell, 2014, 53, 363-364.	9.7	3

SUNIL LAXMAN

#	Article	IF	CITATIONS
37	Sulfur Amino Acids Regulate Translational Capacity and Metabolic Homeostasis through Modulation of tRNA Thiolation. Cell, 2013, 154, 416-429.	28.9	189
38	Methionine Inhibits Autophagy and Promotes Growth by Inducing the SAM-Responsive Methylation of PP2A. Cell, 2013, 154, 403-415.	28.9	203
39	Structure-based design and mechanisms of allosteric inhibitors for mitochondrial branched-chain α-ketoacid dehydrogenase kinase. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9728-9733.	7.1	58
40	tRNA wobbleâ€uridine modification pathways play critical roles in maintaining growth under nutrient limitation by altering the translational capacity of the cell. FASEB Journal, 2012, 26, 944.2.	0.5	0
41	Multiple TORC1-Associated Proteins Regulate Nitrogen Starvation-Dependent Cellular Differentiation in Saccharomyces cerevisiae. PLoS ONE, 2011, 6, e26081.	2.5	18
42	Behavior of a Metabolic Cycling Population at the Single Cell Level as Visualized by Fluorescent Gene Expression Reporters. PLoS ONE, 2010, 5, e12595.	2.5	23
43	Systems approaches for the study of metabolic cycles in yeast. Current Opinion in Genetics and Development, 2010, 20, 599-604.	3.3	15
44	Phosphodiesterase 10., 2007, , 1-11.		0
45	Cyclic Nucleotide Signaling Mechanisms in Trypanosomes: Possible Targets for Therapeutic Agents. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2007, 7, 203-215.	3.4	43
46	Characterization of a novel cAMP-binding, cAMP-specific cyclic nucleotide phosphodiesterase (TcrPDEB1) from Trypanosoma cruzi. Biochemical Journal, 2006, 399, 305-314.	3.7	24
47	Cyclic nucleotide specific phosphodiesterases of the kinetoplastida: A unified nomenclature. Molecular and Biochemical Parasitology, 2006, 145, 133-135.	1.1	39
48	Hydrolysis products of cAMP analogs cause transformation of Trypanosoma brucei from slender to stumpy-like forms. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19194-19199.	7.1	84
49	A novel inhibitor of the T. brucei TbPDE2 cAMP phosphodiesterase family is a potent trypanocidal agent. FASEB Journal, 2006, 20, A1116.	0.5	0
50	Trypanosome Cyclic Nucleotide Phosphodiesterase 2B Binds cAMP through Its GAF-A Domain. Journal of Biological Chemistry, 2005, 280, 3771-3779.	3.4	27