Timothy L Hodgson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2807059/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Applying the British picture vocabulary scale to estimate premorbid cognitive ability in adults. Applied Neuropsychology Adult, 2022, 29, 1049-1059.	1.2	4
2	Patientâ€reported symptoms and experience following Guillainâ€Barré syndrome and related conditions: Questionnaire development and validation. Health Expectations, 2022, 25, 223-231.	2.6	2
3	Visual Attention and Cognitive Archaeology: An Eye-Tracking Study of Palaeolithic Stone Tools. Perception, 2022, 51, 3-24.	1.2	15
4	The Influence of Tool Morphology on Visual Attention During the Interaction with Lower Palaeolithic Stone Tools. Lithic Technology, 2022, 47, 328-339.	1.1	1
5	Does knowledge influence visual attention? A comparative analysis between archaeologists and naÃ ⁻ ve subjects during the exploration of Lower Palaeolithic tools. Archaeological and Anthropological Sciences, 2022, 14, .	1.8	3
6	Patients' experiences and perceptions of Guillain-Barré syndrome: A systematic review and meta-synthesis of qualitative research. PLoS ONE, 2021, 16, e0245826.	2.5	2
7	Deficits in saccadic eye movements differ between subtypes of patients with mild cognitive impairment. Journal of Clinical and Experimental Neuropsychology, 2021, 43, 187-198.	1.3	12
8	The effect of directional social cues on saccadic eye movements in Parkinson's disease. Experimental Brain Research, 2021, 239, 2063-2075.	1.5	1
9	Visual attention reveals affordances during Lower Palaeolithic stone tool exploration. Archaeological and Anthropological Sciences, 2021, 13, 1.	1.8	14
10	Exploring the experiences of having Guillainâ€Barré Syndrome: A qualitative interview study. Health Expectations, 2020, 23, 1338-1349.	2.6	3
11	Eye Movements in Neuropsychological Tasks. Current Topics in Behavioral Neurosciences, 2019, 41, 393-418.	1.7	15
12	Eye Movements in the "Morris Maze―Spatial Working Memory Task Reveal Deficits in Strategic Planning. Journal of Cognitive Neuroscience, 2019, 31, 497-509.	2.3	6
13	Mind Your Step: the Effects of Mobile Phone Use on Gaze Behavior in Stair Climbing. Journal of Technology in Behavioral Science, 2017, 2, 109-120.	2.3	36
14	The developmental trajectory of attentional orienting to socio-biological cues. Experimental Brain Research, 2016, 234, 1351-1362.	1.5	21
15	The Central Bias in Day-to-Day Viewing. Journal of Eye Movement Research, 2016, 9, .	0.8	10
16	An fMRI investigation of moral cognition in healthcare decision making Journal of Neuroscience, Psychology, and Economics, 2015, 8, 116-133.	1.0	7
17	Multi-modal representation of effector modality in frontal cortex during rule switching. Frontiers in Human Neuroscience, 2015, 9, 486.	2.0	2
18	Designing games for the rehabilitation of functional vision for children with cerebral visual impairment. , 2014, , .		12

TIMOTHY L HODGSON

#	Article	IF	CITATIONS
19	fMRI evidence for procedural invariance underlying gambling preference reversals Journal of Neuroscience, Psychology, and Economics, 2014, 7, 48-63.	1.0	4
20	The role of the dominant versus the non-dominant hemisphere: An fMRI study of Aphasia recovery following stroke. Aphasiology, 2014, 28, 1426-1447.	2.2	5
21	Intranasal inhalation of oxytocin improves face processing in developmental prosopagnosia. Cortex, 2014, 50, 55-63.	2.4	73
22	Learning and switching between stimulus-saccade associations in Parkinson's disease. Neuropsychologia, 2013, 51, 1350-1360.	1.6	9
23	Application of the ex-Gaussian function to the effect of the word blindness suggestion on Stroop task performance suggests no word blindness. Frontiers in Psychology, 2013, 4, 647.	2.1	16
24	Temporal constraints of the word blindness posthypnotic suggestion on Stroop task performance Journal of Experimental Psychology: Human Perception and Performance, 2012, 38, 833-837.	0.9	23
25	Limbic and prefrontal activity during conformity and violation of norms in a coordination game Journal of Neuroscience, Psychology, and Economics, 2012, 5, 1-17.	1.0	6
26	Giving Subjects the Eye and Showing Them the Finger: Socio-Biological Cues and Saccade Generation in the Anti-Saccade Task. Perception, 2012, 41, 131-147.	1.2	23
27	Facilitating Goal-Oriented Behaviour in the Stroop Task: When Executive Control Is Influenced by Automatic Processing. PLoS ONE, 2012, 7, e46994.	2.5	9
28	Act Quickly, Decide Later: Long-latency Visual Processing Underlies Perceptual Decisions but Not Reflexive Behavior. Journal of Cognitive Neuroscience, 2011, 23, 3734-3745.	2.3	15
29	Abnormal negative feedback processing in first episode schizophrenia: evidence from an oculomotor rule switching task. Psychological Medicine, 2011, 41, 1805-1814.	4.5	6
30	Positive and negative emotion enhances the processing of famous faces in a semantic judgment task Neuropsychology, 2010, 24, 84-89.	1.3	2
31	The philosopher in the scanner (or: how can neuroscience contribute to social philosophy?). Journal of Economic Methodology, 2010, 17, 147-157.	1.4	4
32	The saccadic Stroop effect: Evidence for involuntary programming of eye movements by linguistic cues. Vision Research, 2009, 49, 569-574.	1.4	23
33	Acute exercise modulates cigarette cravings and brain activation in response to smoking-related images: an fMRI study. Psychopharmacology, 2009, 203, 589-598.	3.1	104
34	The effects of acute exercise on attentional bias towards smokingâ€related stimuli during temporary abstinence from smoking. Addiction, 2009, 104, 1910-1917.	3.3	61
35	Covert face recognition relies on affective valence in congenital prosopagnosia. Cognitive Neuropsychology, 2009, 26, 391-411.	1.1	27
36	Imaging the impossible: An fMRI study of impossible causal relationships in magic tricks. NeuroImage, 2009, 45, 1033-1039.	4.2	75

TIMOTHY L HODGSON

3

#	Article	IF	CITATIONS
37	The neural basis of overall similarity and single-dimension sorting. NeuroImage, 2009, 46, 319-326.	4.2	31
38	Angry faces are special too: Evidence from the visual scanpath Neuropsychology, 2009, 23, 658-667.	1.3	8
39	Accounting for regressive eye-movements in models of sentence processing: A reappraisal of the Selective Reanalysis hypothesis. Journal of Memory and Language, 2008, 59, 266-293.	2.1	81
40	Evidence of an eye movement-based memory effect in congenital prosopagnosia. Cortex, 2008, 44, 806-819.	2.4	56
41	Supplementary eye field contributions to the execution of saccades to remembered target locations. Progress in Brain Research, 2008, 171, 419-423.	1.4	4
42	Eye movements in visual search indicate impaired saliency processing in Parkinson's disease. Progress in Brain Research, 2008, 171, 559-562.	1.4	24
43	The Role of the Lateral Prefrontal Cortex and Anterior Cingulate in Stimulus-Response Association Reversals. Journal of Cognitive Neuroscience, 2007, 19, 13-24.	2.3	28
44	The role of the ventrolateral frontal cortex in inhibitory oculomotor control. Brain, 2007, 130, 1525-1537.	7.6	83
45	Predictive Learning, Prediction Errors, and Attention: Evidence from Event-related Potentials and Eye Tracking. Journal of Cognitive Neuroscience, 2007, 19, 843-854.	2.3	96
46	Gaze strategies during planning in first-episode psychosis Journal of Abnormal Psychology, 2007, 116, 589-598.	1.9	20
47	Role of the human supplementary eye field in the control of saccadic eye movements. Neuropsychologia, 2007, 45, 997-1008.	1.6	59
48	Cognitive Processes in Saccade Generation. Annals of the New York Academy of Sciences, 2005, 1039, 176-183.	3.8	15
49	Revisiting Previously Searched Locations in Visual Neglect: Role of Right Parietal and Frontal Lesions in Misjudging Old Locations as New. Journal of Cognitive Neuroscience, 2005, 17, 340-354.	2.3	135
50	Eye Movements during Task Switching: Reflexive, Symbolic, and Affective Contributions to Response Selection. Journal of Cognitive Neuroscience, 2004, 16, 318-330.	2.3	26
51	Memory-motor transformations are impaired in Parkinson's disease. Experimental Brain Research, 2003, 149, 30-39.	1.5	30
52	Self-control during response conflict by human supplementary eye field. Nature Neuroscience, 2003, 6, 117-118.	14.8	107
53	Differential cortical activation during voluntary and reflexive saccades in man. NeuroImage, 2003, 18, 231-246.	4.2	168

54 Executive Contributions to Eye Movement Control. , 2003, , 49-64.

4

TIMOTHY L HODGSON

#	ARTICLE	IF	CITATIONS
55	Abnormal gaze strategies during problem solving in Parkinson's disease. Neuropsychologia, 2002, 40, 411-422.	1.6	54
56	Orbitofrontal cortex mediates inhibition of return. Neuropsychologia, 2002, 40, 1891-1901.	1.6	31
57	Visual object memory and memory-guided saccades rely on shared mental representations. Experimental Brain Research, 2002, 143, 509-514.	1.5	4
58	The location marker effect. Experimental Brain Research, 2002, 145, 539-542.	1.5	17
59	Ocular flutter associated with a localized lesion in the paramedian pontine reticular formation. Annals of Neurology, 2001, 50, 413-416.	5.3	59
60	The Strategic Control of Gaze Direction in the Tower of London Task. Journal of Cognitive Neuroscience, 2000, 12, 894-907.	2.3	71
61	Disorders of higher visual function and hemi-spatial neglect. Current Opinion in Neurology, 2000, 13, 7-12.	3.6	11
62	Attentional localization prior to simpleand directed manual responses. Perception & Psychophysics, 1999, 61, 308-321.	2.3	24
63	Eye movements and spatial working memory inParkinsons disease. Neuropsychologia, 1999, 37, 927-938.	1.6	89
64	Attentional Orienting in Two-dimensional Space. Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 1999, 52, 615-648.	2.3	8
65	Saccadic eye movement and working memory deficits following damage to human prefrontal cortex. Neuropsychologia, 1998, 36, 1141-1159.	1.6	175
66	Evidence Relating to Premotor Theories of Visuospattal Attention. Studies in Visual Information Processing, 1995, , 305-316.	0.3	18