Kenneth Gall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2805885/publications.pdf

Version: 2024-02-01

25034 28297 11,838 151 57 105 citations h-index g-index papers 154 154 154 8909 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Computational and image processing methods for analysis and automation of anatomical alignment and joint spacing in reconstructive surgery. International Journal of Computer Assisted Radiology and Surgery, 2022, 17, 541-551.	2.8	2
2	Direct evidence of interfacial crystallization preventing weld formation during fused filament fabrication of poly(ether ether ketone). Additive Manufacturing, 2022, 51, 102604.	3.0	6
3	Outcomes of Surgical Reconstruction Using Custom 3D-Printed Porous Titanium Implants for Critical-Sized Bone Defects of the Foot and Ankle. Foot and Ankle International, 2022, 43, 750-761.	2.3	18
4	Effects of 3D printed surface topography and normal force on implant expulsion. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 130, 105208.	3.1	3
5	Highâ€Strength Composites Based on 3D Printed Porous Scaffolds Infused with a Bioresorbable Mineral–Organic Bone Adhesive. Advanced Engineering Materials, 2022, 24, .	3.5	4
6	Eight-Fold Intensification of Electrochemical Azidooxygenation with a Flow-Through Electrode. ACS Sustainable Chemistry and Engineering, 2022, 10, 7648-7657.	6.7	7
7	Flaw sensitivity and tensile fatigue of a high-strength hydrogel. International Journal of Fatigue, 2022, 163, 107071.	5.7	O
8	<scp>3D</scp> printing of highâ€strength, porous, elastomeric structures to promote tissue integration of implants. Journal of Biomedical Materials Research - Part A, 2021, 109, 54-63.	4.0	30
9	Compressive anisotropy of sheet and strut based porous Ti–6Al–4V scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 115, 104243.	3.1	38
10	Flaw Sensitivity and Tensile Fatigue of Poly(Vinyl Alcohol) Hydrogels. Macromolecular Materials and Engineering, 2021, 306, 2000679.	3.6	9
11	Reinforcement and Fatigue of a Bioinspired Mineral–Organic Bioresorbable Bone Adhesive. Advanced Healthcare Materials, 2021, 10, e2001058.	7.6	16
12	Highâ€Strength Hydrogel Attachment through Nanofibrous Reinforcement. Advanced Healthcare Materials, 2021, 10, e2001119.	7.6	3
13	Tailoring nitric oxide release with additive manufacturing to create antimicrobial surfaces. Biomaterials Science, 2021, 9, 3100-3111.	5.4	16
14	Effect of surface topography on in vitro osteoblast function and mechanical performance of <scp>3D</scp> printed titanium. Journal of Biomedical Materials Research - Part A, 2021, 109, 1792-1802.	4.0	9
15	Functional repair of critically sized femoral defects treated with bioinspired titanium gyroid-sheet scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 116, 104380.	3.1	24
16	Fabrication of Biomedical Scaffolds Using Biodegradable Polymers. Chemical Reviews, 2021, 121, 11238-11304.	47.7	127
17	Processing, structure, and properties of additively manufactured titanium scaffolds with gyroid-sheet architecture. Additive Manufacturing, 2021, 41, 101916.	3.0	7
18	Rotational Wear and Friction of Ti-6Al-4V and CoCrMo against Polyethylene and Polycarbonate Urethane. Biotribology, 2021, 26, 100167.	1.9	8

#	Article	IF	Citations
19	Poly(lactideâ€coâ€Îµâ€caprolactone) scaffold promotes equivalent tissue integration and supports skin grafts compared to a predicate collagen scaffold. Wound Repair and Regeneration, 2021, 29, 1035-1050.	3.0	11
20	Structure-property relationships in 3D-printed poly(l-lactide-co-ε-caprolactone) degradable polymer. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 121, 104650.	3.1	13
21	Stochastic Modeling and identification of material parameters on structures produced by additive manufacturing. Computer Methods in Applied Mechanics and Engineering, 2021, 387, 114166.	6.6	8
22	Polycarbonate Urethane Mesh: A New Material for Pelvic Reconstruction. Female Pelvic Medicine and Reconstructive Surgery, 2021, 27, e469-e475.	1.1	5
23	High-strength, porous additively manufactured implants with optimized mechanical osseointegration. Biomaterials, 2021, 279, 121206.	11.4	71
24	Evaluation of Host Immune Cellular and Extracellular Matrix Responses to Prolapse Mesh With and Without Tension in a Rat Model. Female Pelvic Medicine and Reconstructive Surgery, 2021, 27, e385-e391.	1.1	3
25	Effects of Surface Topography and Chemistry on Polyether-Ether-Ketone (PEEK) and Titanium Osseointegration. Spine, 2020, 45, E417-E424.	2.0	26
26	Pseudoelastic NiTiNOL in Orthopaedic Applications. Shape Memory and Superelasticity, 2020, 6, 332-341.	2.2	26
27	Free boundary effects and representative volume elements in 3D printed Ti–6Al–4V gyroid structures. Journal of Materials Research, 2020, 35, 2547-2555.	2.6	14
28	A Synthetic Hydrogel Composite with the Mechanical Behavior and Durability of Cartilage. Advanced Functional Materials, 2020, 30, 2003451.	14.9	171
29	Tensile Fatigue of Poly(Vinyl Alcohol) Hydrogels with Bioâ€Friendly Toughening Agents. Macromolecular Materials and Engineering, 2020, 305, 1900784.	3.6	16
30	Modulating antibiotic release from reservoirs in 3Dâ€printed orthopedic devices to treat periprosthetic joint infection. Journal of Orthopaedic Research, 2020, 38, 2239-2249.	2.3	11
31	Helmet Modification to PPE With 3D Printing During the COVID-19 Pandemic at Duke University Medical Center: A Novel Technique. Journal of Arthroplasty, 2020, 35, S23-S27.	3.1	79
32	Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering. Acta Biomaterialia, 2019, 94, 610-626.	8.3	149
33	Application of a novel suture anchor to abdominal wall closure. American Journal of Surgery, 2019, 218, 1-6.	1.8	4
34	Authors' reply to Letter to the Editor regarding: Impaction durability of porous PEEK and titanium-coated PEEK interbody fusion devices. Spine Journal, 2019, 19, 2042-2043.	1.3	1
35	The effect of surface topography and porosity on the tensile fatigue of 3D printed Ti-6Al-4V fabricated by selective laser melting. Materials Science and Engineering C, 2019, 98, 726-736.	7.3	69
36	Effect of porous orthopaedic implant material and structure on load sharing with simulated bone ingrowth: A finite element analysis comparing titanium and PEEK. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 80, 68-76.	3.1	91

#	Article	IF	CITATIONS
37	Tough, stable spiroacetal thiolâ€ene resin for 3D printing. Journal of Applied Polymer Science, 2018, 135, 46259.	2.6	39
38	Impaction durability of porous polyether-ether-ketone (PEEK) and titanium-coated PEEK interbody fusion devices. Spine Journal, 2018, 18, 857-865.	1.3	57
39	Modifying hernia mesh design to improve device mechanical performance and promote tension-free repair. Journal of Biomechanics, 2018, 71, 43-51.	2.1	14
40	Design and Structure–Function Characterization of 3D Printed Synthetic Porous Biomaterials for Tissue Engineering. Advanced Healthcare Materials, 2018, 7, e1701095.	7.6	111
41	Biomaterials: Bioinspired Mineral-Organic Bioresorbable Bone Adhesive (Adv. Healthcare Mater.) Tj ETQq1 1 0.78	34314 rgB ⁻	T/gverlock 1
42	Porous PEEK improves the bone-implant interface compared to plasma-sprayed titanium coating on PEEK. Biomaterials, 2018, 185, 106-116.	11.4	155
43	Adjustable-Loop Femoral Cortical Suspensory Fixation for Patellar Tendon Anterior Cruciate Ligament Reconstruction: A Time Zero Biomechanical Comparison With Interference Screw Fixation. American Journal of Sports Medicine, 2018, 46, 1857-1862.	4.2	8
44	Bioinspired Mineral–Organic Bioresorbable Bone Adhesive. Advanced Healthcare Materials, 2018, 7, e1800467.	7.6	46
45	Creating a Small Anchor to Eliminate Large Knots in Mesh and Tape Suture. Journal of Medical Devices, Transactions of the ASME, 2018, 12, .	0.7	2
46	Examining the viability of carbon fiber reinforced three-dimensionally printed prosthetic feet created by composite filament fabrication. Prosthetics and Orthotics International, 2018, 42, 644-651.	1.0	14
47	Tough Semicrystalline Thiol–Ene Photopolymers Incorporating Spiroacetal Alkenes. Macromolecules, 2017, 50, 4281-4291.	4.8	22
48	Fatigue of injection molded and 3D printed polycarbonate urethane in solution. Polymer, 2017, 108, 121-134.	3.8	59
49	Shape-memory Polymers for Orthopaedic Soft-Tissue Repair. Techniques in Orthopaedics, 2017, 32, 141-148.	0.2	4
50	Getting PEEK to Stick to Bone: The Development of Porous PEEK for Interbody Fusion Devices. Techniques in Orthopaedics, 2017, 32, 158-166.	0.2	67
51	Deformation and fatigue of tough 3D printed elastomer scaffolds processed by fused deposition modeling and continuous liquid interface production. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 75, 1-13.	3.1	37
52	Local deformation behavior of surface porous polyether-ether-ketone. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 65, 522-532.	3.1	28
53	Development of Novel Orthopaedic Materials. Techniques in Orthopaedics, 2017, 32, 131-131.	0.2	0
54	Substrate Stiffness Controls Osteoblastic and Chondrocytic Differentiation of Mesenchymal Stem Cells without Exogenous Stimuli. PLoS ONE, 2017, 12, e0170312.	2.5	157

#	Article	IF	CITATIONS
55	Do Surface Porosity and Pore Size Influence Mechanical Properties and Cellular Response to PEEK?. Clinical Orthopaedics and Related Research, 2016, 474, 2373-2383.	1.5	66
56	Change in surface roughness by dynamic shape-memory acrylate networks enhances osteoblast differentiation. Biomaterials, 2016, 110, 34-44.	11.4	36
57	Use of 3D Printed Bone Plate in Novel Technique to Surgically Correct Hallux Valgus Deformities. Techniques in Orthopaedics, 2016, 31, 181-189.	0.2	26
58	Impact of surface porosity and topography on the mechanical behavior of high strength biomedical polymers. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 59, 459-473.	3.1	31
59	Compressive cyclic ratcheting and fatigue of synthetic, soft biomedical polymers in solution. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 54, 268-282.	3.1	17
60	High-strength, surface-porous polyether-ether-ketone for load-bearing orthopedic implants. Acta Biomaterialia, 2015, 13, 159-167.	8.3	158
61	A Possible Oriented Attachment Growth Mechanism for Silver Nanowire Formation. Crystal Growth and Design, 2015, 15, 1968-1974.	3.0	52
62	Structural transformations in NiTi shape memory alloy nanowires. Journal of Applied Physics, 2014, 115, .	2.5	54
63	Semi-degradable poly(\hat{l}^2 -amino ester) networks with temporally controlled enhancement of mechanical properties. Acta Biomaterialia, 2014, 10, 3475-3483.	8.3	9
64	A surface stacking fault energy approach to predicting defect nucleation in surface-dominated nanostructures. Journal of the Mechanics and Physics of Solids, 2013, 61, 1915-1934.	4.8	30
65	On superelastic bending of shape memory alloy beams. International Journal of Solids and Structures, 2013, 50, 1664-1680.	2.7	60
66	Mechanical Requirements of Shape-Memory Polymers in Biomedical Devices. Polymer Reviews, 2013, 53, 76-91.	10.9	45
67	A micromechanical analysis of the coupled thermomechanical superelastic response of textured and untextured polycrystalline NiTi shape memory alloys. Acta Materialia, 2013, 61, 4542-4558.	7.9	33
68	Effect of crosslinking and long-term storage on the shape-memory behavior of (meth)acrylate-based shape-memory polymers. Soft Matter, 2012, 8, 7381.	2.7	53
69	Atomistic characterization of pseudoelasticity and shape memory in NiTi nanopillars. Acta Materialia, 2012, 60, 6301-6311.	7.9	92
70	Anterior cruciate ligament fixation: Is radial force a predictor of the pullout strength of soft-tissue interference devices?. Knee, 2012, 19, 786-792.	1.6	16
71	Impact of shape-memory programming on mechanically-driven recovery in polymers. Polymer, 2011, 52, 4947-4954.	3.8	41
72	Thermo-mechanical properties of semi-degradable Poly(\hat{l}^2 -amino ester)-co-methyl methacrylate networks under simulated physiological conditions. Polymer, 2011, 52, 4920-4927.	3.8	13

#	Article	IF	Citations
73	Effect of poly(ethylene glycol) diacrylate concentration on network properties and ⟨i⟩in vivo⟨ i⟩ response of poly(l²â€amino ester) networks. Journal of Biomedical Materials Research - Part A, 2011, 96A, 320-329.	4.0	13
74	Postâ€polymerization crosslinked polyurethane shape memory polymers. Journal of Applied Polymer Science, 2011, 121, 144-153.	2.6	60
75	Long-term toughness of photopolymerizable (meth)acrylate networks in aqueous environments. Acta Biomaterialia, 2011, 7, 558-567.	8.3	20
76	Pseudoelastic intramedullary nailing for tibio–talo–calcaneal arthrodesis. Expert Review of Medical Devices, 2011, 8, 159-166.	2.8	21
77	Highâ€Strain Shapeâ€Memory Polymers. Advanced Functional Materials, 2010, 20, 162-171.	14.9	214
78	Pullout strength of suture anchors: Effect of mechanical properties of trabecular bone. Journal of Biomechanics, 2010, 43, 1138-1145.	2.1	55
79	The effect of the trabecular microstructure on the pullout strength of suture anchors. Journal of Biomechanics, 2010, 43, 1953-1959.	2.1	49
80	The effect of chemistry on the polymerization, thermo-mechanical properties and degradation rate of poly(\hat{l}^2 -amino ester) networks. Polymer, 2010, 51, 3130-3138.	3.8	19
81	Radiation crosslinked shape-memory polymers. Polymer, 2010, 51, 3551-3559.	3.8	56
82	Compression Forces of Internal and External Ankle Fixation Devices with Simulated Bone Resorption. Foot and Ankle International, 2010, 31, 76-85.	2.3	44
83	A metallization and bonding approach for high performance carbon nanotube thermal interface materials. Nanotechnology, 2010, 21, 445705.	2.6	95
84	Bearing area: A new indication for suture anchor pullout strength?. Journal of Orthopaedic Research, 2009, 27, 1048-1054.	2.3	29
85	Shapeâ€memory polymer networks with Fe ₃ O ₄ nanoparticles for remote activation. Journal of Applied Polymer Science, 2009, 112, 3166-3176.	2.6	132
86	On the toughness of photopolymerizable (meth)acrylate networks for biomedical applications. Journal of Applied Polymer Science, 2009, 114, 2711-2722.	2.6	30
87	The effect of the glass transition temperature on the toughness of photopolymerizable (meth)acrylate networks under physiological conditions. Polymer, 2009, 50, 5112-5123.	3.8	58
88	Synthesis and thermomechanical behavior of (qua)ternary thiol-ene(/acrylate) copolymers. Polymer, 2009, 50, 5549-5558.	3.8	16
89	Structure and thermomechanical behavior of NiTiPt shape memory alloy wires. Acta Biomaterialia, 2009, 5, 257-267.	8.3	38
90	Remote activation of nanomagnetite reinforced shape memory polymer foam. Smart Materials and Structures, 2009, 18, 115014.	3.5	50

#	Article	IF	CITATION
91	Thermomechanical Formation and Recovery of Nanoindents in a Shape Memory Polymer Studied Using a Heated Tip. Scanning, 2008, 30, 197-202.	1.5	21
92	Structure–property relationships in photopolymerizable polymer networks: Effect of composition on the crosslinked structure and resulting thermomechanical properties of a (meth)acrylateâ€based system. Journal of Applied Polymer Science, 2008, 110, 1559-1572.	2.6	75
93	Strong, Tailored, Biocompatible Shapeâ€Memory Polymer Networks. Advanced Functional Materials, 2008, 18, 2428-2435.	14.9	321
94	Effect of chemical structure and crosslinking density on the thermo-mechanical properties and toughness of (meth)acrylate shape memory polymer networks. Polymer, 2008, 49, 4446-4455.	3.8	219
95	Effect of microstructure on the fatigue of hot-rolled and cold-drawn NiTi shape memory alloys. Materials Science & Deprimentation (among the structural Materials: Properties, Microstructure and Processing, 2008, 486, 389-403.	5.6	129
96	On The Elastic Modulus of Metallic Nanowires. Nano Letters, 2008, 8, 3613-3618.	9.1	147
97	Tip size effects on atomic force microscopy nanoindentation of a gold single crystal. Journal of Applied Physics, 2008, 104, .	2.5	20
98	Structural Engineering with NiTi. I: Basic Materials Characterization. Journal of Engineering Mechanics - ASCE, 2007, 133, 1009-1018.	2.9	38
99	A Biomechanical Comparison of Initial Fixation Strength of 3 Different Methods of Anterior Cruciate Ligament Soft Tissue Graft Tibial Fixation. American Journal of Sports Medicine, 2007, 35, 949-954.	4.2	27
100	Mechanical Effects of Galvanic Corrosion on Structural Polysilicon. Journal of Microelectromechanical Systems, 2007, 16, 87-101.	2.5	34
101	Galvanic corrosion induced degredation of tensile properties in micromachined polycrystalline silicon. Applied Physics Letters, 2007, 90, 191902.	3.3	13
102	Molecular dynamics simulations of the shape-memory behaviour of polyisoprene. Smart Materials and Structures, 2007, 16, 1575-1583.	3.5	69
103	Nanoindentation of shape memory polymer networks. Polymer, 2007, 48, 3213-3225.	3.8	96
104	Characteristics of a commercially available silicon-on-insulator MEMS material. Sensors and Actuators A: Physical, 2007, 138, 130-144.	4.1	66
105	Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications. Biomaterials, 2007, 28, 2255-2263.	11.4	536
106	Thermo-mechanical evolution of multilayer thin films: Part II. Microstructure evolution in Au/Cr/Si microcantilevers. Thin Solid Films, 2007, 515, 3224-3240.	1.8	17
107	Thermo-mechanical evolution of multilayer thin films: Part I. Mechanical behavior of Au/Cr/Si microcantilevers. Thin Solid Films, 2007, 515, 3208-3223.	1.8	22
108	Stress-induced martensitic transformations and shape memory at nanometer scales. Acta Materialia, 2006, 54, 2223-2234.	7.9	123

#	Article	IF	Citations
109	Bioabsorbable Polymers Used in Knee Arthroscopy, Part 1. Techniques in Knee Surgery, 2006, 5, 193-198.	0.1	3
110	Bioabsorbable Polymers Used in Knee Arthroscopy, Part 2. Techniques in Knee Surgery, 2006, 5, 199-204.	0.1	0
111	Finite strain 3D thermoviscoelastic constitutive model for shape memory polymers. Polymer Engineering and Science, 2006, 46, 486-492.	3.1	210
112	Atomistic simulations of the yielding of gold nanowires. Acta Materialia, 2006, 54, 643-653.	7.9	242
113	Thermomechanics of shape memory polymers: Uniaxial experiments and constitutive modeling. International Journal of Plasticity, 2006, 22, 279-313.	8.8	650
114	Deformation of FCC nanowires by twinning and slip. Journal of the Mechanics and Physics of Solids, 2006, 54, 1862-1881.	4.8	294
115	Incipient yielding behavior during indentation for gold thin films before and after annealing. Journal of Materials Research, 2006, 21, 2480-2492.	2.6	7
116	Toward a self-deploying shape memory polymer neuronal electrode. Journal of Neural Engineering, 2006, 3, L23-L30.	3.5	97
117	Environmentally influenced microstructurally small fatigue crack growth in cast magnesium. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 396, 143-154.	5.6	40
118	Shape Memory and Pseudoelasticity in Metal Nanowires. Physical Review Letters, 2005, 95, 255504.	7.8	282
119	Thermal processing of polycrystalline NiTi shape memory alloys. Materials Science & Dipering A: Structural Materials: Properties, Microstructure and Processing, 2005, 405, 34-49.	5.6	194
120	Shape recovery of nanoscale imprints in a thermoset "shape memory―polymer. Applied Physics Letters, 2005, 86, 103108.	3.3	48
121	Galvanic Corrosion of Miniaturized Polysilicon Structures. Electrochemical and Solid-State Letters, 2005, 8, G223.	2.2	18
122	Suppression of inelastic deformation of nanocoated thin film microstructures. Journal of Applied Physics, 2004, 95, 8216-8225.	2.5	17
123	The Strength of Gold Nanowires. Nano Letters, 2004, 4, 2431-2436.	9.1	280
124	Yield Strength Asymmetry in Metal Nanowires. Nano Letters, 2004, 4, 1863-1867.	9.1	207
125	Thermomechanics of shape memory polymer nanocomposites. Mechanics of Materials, 2004, 36, 929-940.	3.2	266
126	In-situ observations of high cycle fatigue mechanisms in cast AM60B magnesium in vacuum and water vapor environments. International Journal of Fatigue, 2004, 26, 59-70.	5.7	61

#	Article	IF	Citations
127	Thermal cycling response of layered gold/polysilicon MEMS structures. Mechanics of Materials, 2004, 36, 45-55.	3.2	25
128	Atomistic simulation of the structure and elastic properties of gold nanowires. Journal of the Mechanics and Physics of Solids, 2004, 52, 1935-1962.	4.8	300
129	Analysis of the fatigue failure of a mountain bike front shock. Engineering Failure Analysis, 2004, 11, 375-386.	4.0	19
130	High cycle fatigue of a die cast AZ91E-T4 magnesium alloy. Acta Materialia, 2004, 52, 1327-1336.	7.9	162
131	Creep of thin film Au on bimaterial Au/Si microcantilevers. Acta Materialia, 2004, 52, 2133-2146.	7.9	32
132	Internal stress storage in shape memory polymer nanocomposites. Applied Physics Letters, 2004, 85, 290-292.	3.3	119
133	Cyclic plasticity at pores and inclusions in cast Al–Si alloys. Engineering Fracture Mechanics, 2003, 70, 1281-1302.	4.3	127
134	Numerical, experimental, nondestructive, and image analyses of damage progression in cast A356 aluminum notch tensile bars. Theoretical and Applied Fracture Mechanics, 2003, 39, 23-45.	4.7	25
135	Surface-stress-induced phase transformation in metal nanowires. Nature Materials, 2003, 2, 656-660.	27.5	477
136	Making the Grade with Students: The Case for Accessibility. Journal of Engineering Education, 2003, 92, 337-343.	3.0	7
137	Thermomechanical recovery couplings of shape memory polymers in flexure. Smart Materials and Structures, 2003, 12, 947-954.	3 . 5	106
138	Thermomechanical response of bare and Al2O3-nanocoated Au/Si bilayer beams for microelectromechanical systems. Journal of Materials Research, 2003, 18, 1575-1587.	2.6	13
139	Micro and Macro Deformation of Single Crystal NiTi. Journal of Engineering Materials and Technology, Transactions of the ASME, 2002, 124, 238-245.	1.4	57
140	Shape memory polymer nanocomposites. Acta Materialia, 2002, 50, 5115-5126.	7.9	388
141	Cyclic deformation behavior of single crystal NiTi. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 314, 67-74.	5.6	102
142	On the mechanical behavior of single crystal NiTi shape memory alloys and related polycrystalline phenomenon. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 317, 85-92.	5.6	118
143	Computational micromechanics analysis of cyclic crack-tip behavior for microstructurally small cracks in dual-phase Al–Si alloys. Engineering Fracture Mechanics, 2001, 68, 1687-1706.	4.3	66
144	Title is missing!. International Journal of Fracture, 2001, 108, 207-233.	2.2	102

KENNETH GALL

#	Article	IF	CITATION
145	Fracture of precipitated NiTi shape memory alloys. International Journal of Fracture, 2001, 109, 189-207.	2.2	94
146	Integration of Basic Materials Research Into the Design of Cast Components by a Multi-Scale Methodology. Journal of Engineering Materials and Technology, Transactions of the ASME, 2000, 122, 355-362.	1.4	13
147	Atomistic simulations on the tensile debonding of an aluminum–silicon interface. Journal of the Mechanics and Physics of Solids, 2000, 48, 2183-2212.	4.8	157
148	Finite element analysis of the stress distributions near damaged Si particle clusters in cast Al–Si alloys. Mechanics of Materials, 2000, 32, 277-301.	3.2	116
149	The role of intergranular constraint on the stress-induced martensitic transformation in textured polycrystalline NiTi. International Journal of Plasticity, 2000, 16, 1189-1214.	8.8	104
150	Carbon Fiber Reinforced Shape Memory Polymer Composites. Journal of Intelligent Material Systems and Structures, 2000, 11, 877-886.	2.5	28
151	The role of texture in tension–compression asymmetry in polycrystalline NiTi. International Journal of Plasticity, 1999, 15, 69-92.	8.8	292