Thierry Walzer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2805564/publications.pdf Version: 2024-02-01

Τηιέρον \λ/λι σερ

#	Article	IF	CITATIONS
1	Eomes and Tâ€bet, a dynamic duo regulating NK cell differentiation. BioEssays, 2022, 44, e2100281.	2.5	3
2	Combinatorial Expression of NK Cell Receptors Governs Cell Subset Reactivity and Effector Functions but Not Tumor Specificity. Journal of Immunology, 2022, 208, 1802-1812.	0.8	1
3	Effect of acute aerobic exercise before immunotherapy and chemotherapy infusion in patients with metastatic non-small-cell lung cancer: protocol for the ERICA feasibility trial. BMJ Open, 2022, 12, e056819.	1.9	6
4	DNASE1L3 deficiency, new phenotypes, and evidence for a transient type I IFN signaling. Journal of Clinical Immunology, 2022, 42, 1310-1320.	3.8	7
5	Zeb1 represses TCR signaling, promotes the proliferation of T cell progenitors and is essential for NK1.1+ T cell development. Cellular and Molecular Immunology, 2021, 18, 2140-2152.	10.5	12
6	A longitudinal study of SARS-CoV-2-infected patients reveals a high correlation between neutralizing antibodies and COVID-19 severity. Cellular and Molecular Immunology, 2021, 18, 318-327.	10.5	270
7	Antibodies against type I interferon: detection and association with severe clinical outcome in COVIDâ€19 patients. Clinical and Translational Immunology, 2021, 10, e1327.	3.8	79
8	Peripheral natural killer cells in chronic hepatitis B patients display multiple molecular features of T cell exhaustion. ELife, 2021, 10, .	6.0	22
9	LACC1 deficiency links juvenile arthritis with autophagy and metabolism in macrophages. Journal of Experimental Medicine, 2021, 218, .	8.5	17
10	Cutting Edge: mTORC1 Inhibition in Metastatic Breast Cancer Patients Negatively Affects Peripheral NK Cell Maturation and Number. Journal of Immunology, 2021, 206, 2265-2270.	0.8	7
11	Innate (and Innate-like) Lymphoid Cells: Emerging Immune Subsets With Multiple Roles Along Transplant Life. Transplantation, 2021, 105, e322-e336.	1.0	9
12	Polyclonal expansion of TCR Vβ 21.3 ⁺ CD4 ⁺ and CD8 ⁺ T cells is a hallmark of multisystem inflammatory syndrome in children. Science Immunology, 2021, 6, .	11.9	105
13	Chronic T cell receptor stimulation unmasks NK receptor signaling in peripheral T cell lymphomas via epigenetic reprogramming. Journal of Clinical Investigation, 2021, 131, .	8.2	4
14	Early nasal type I IFN immunity against SARS-CoV-2 is compromised in patients with autoantibodies against type I IFNs. Journal of Experimental Medicine, 2021, 218, .	8.5	85
15	Evaluation of TTV replication as a biomarker of immune checkpoint inhibitors efficacy in melanoma patients. PLoS ONE, 2021, 16, e0255972.	2.5	1
16	Specific detection of memory Tâ€cells in COVIDâ€19 patients using standardized wholeâ€blood Interferon gammarelease assay. European Journal of Immunology, 2021, 51, 3239-3242.	2.9	8
17	Sequential actions of EOMES and T-BET promote stepwise maturation of natural killer cells. Nature Communications, 2021, 12, 5446.	12.8	38
18	Novel Potent Selective Orally Active S1P5 Receptor Antagonists. ACS Medicinal Chemistry Letters, 2021, 12, 351-355.	2.8	2

#	Article	IF	CITATIONS
19	Immunogenicity and efficacy of            heterologous ChAdOx1–BNT162b2 vaccinat 701-706.	tion, Natur 27.8	e, 2021, 60 180
20	Multiparametric Flow Cytometry Evaluation of CD200L/CD200R- LSC/NK Synapse Including Leukemia Stem Cell (LSC) Fraction As a Potential Therapeutic Target and Marker of NK Cell Exhaustion in Pediatric AML-Conect-AML French Collaborative Network. Blood, 2021, 138, 2375-2375.	1.4	0
21	Chronic IL-15 Stimulation and Impaired mTOR Signaling and Metabolism in Natural Killer Cells During Acute Myeloid Leukemia. Frontiers in Immunology, 2021, 12, 730970.	4.8	6
22	Inflammasome Deletion Promotes Anti-tumor NK Cell Function in an IL-1/IL-18 Independent Way in Murine Invasive Breast Cancer. Frontiers in Oncology, 2020, 10, 1683.	2.8	8
23	Low glycosylated ferritin is a sensitive biomarker of severe COVID-19. Cellular and Molecular Immunology, 2020, 17, 1183-1185.	10.5	7
24	Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmunity Reviews, 2020, 19, 102567.	5.8	521
25	Type I IFN immunoprofiling in COVID-19 patients. Journal of Allergy and Clinical Immunology, 2020, 146, 206-208.e2.	2.9	234
26	Contribution of rare and predicted pathogenic gene variants to childhood-onset lupus: a large, genetic panel analysis of British and French cohorts. Lancet Rheumatology, The, 2020, 2, e99-e109.	3.9	38
27	Editorial: TGF-β as a Key Regulator of NK and ILCs Development and Functions. Frontiers in Immunology, 2020, 11, 631712.	4.8	3
28	Monogenic lupus: Dissecting heterogeneity. Autoimmunity Reviews, 2019, 18, 102361.	5.8	74
29	Pyrin dephosphorylation is sufficient to trigger inflammasome activation in familial Mediterranean fever patients. EMBO Molecular Medicine, 2019, 11, e10547.	6.9	54
30	Styk1 expression is a hallmark of murine NK cells and other NK1.1 ⁺ subsets but is dispensable for NKâ€cell development and effector functions. European Journal of Immunology, 2019, 49, 677-685.	2.9	2
31	Styk1 is specifically expressed in NK1.1 ⁺ lymphocytes including NK, γδT, and iNKT cells in mice, but is dispensable for their ontogeny and function. European Journal of Immunology, 2019, 49, 686-693.	2.9	1
32	Missing self triggers NK cell-mediated chronic vascular rejection of solid organ transplants. Nature Communications, 2019, 10, 5350.	12.8	100
33	Identification of Primary Natural Killer Cell Modulators by Chemical Library Screening with a Luciferase-Based Functional Assay. SLAS Discovery, 2019, 24, 25-37.	2.7	10
34	The role of Eomes in human CD4 T cell differentiation: A question of context. European Journal of Immunology, 2019, 49, 38-41.	2.9	29
35	Comparison of RT-qPCR and Nanostring in the measurement of blood interferon response for the diagnosis of type I interferonopathies. Cytokine, 2019, 113, 446-452.	3.2	51
36	An immunosuppressive pathway for tumor progression. Nature Medicine, 2018, 24, 260-261.	30.7	11

#	Article	IF	CITATIONS
37	Large deletion in 6q associated to A20 haploinsufficiency and thoracoabdominal heterotaxy. Annals of the Rheumatic Diseases, 2018, 77, 1697-1698.	0.9	14
38	Deletion of Inflammasome Components Is Not Sufficient To Prevent Fatal Inflammation in Models of Familial Hemophagocytic Lymphohistiocytosis. Journal of Immunology, 2018, 200, 3769-3776.	0.8	5
39	Antigen-Induced but Not Innate Memory CD8 T Cells Express NKG2D and Are Recruited to the Lung Parenchyma upon Viral Infection. Journal of Immunology, 2018, 200, 3635-3646.	0.8	22
40	Tâ€bet and Eomes govern differentiation and function of mouse and human NK cells and ILC1. European Journal of Immunology, 2018, 48, 738-750.	2.9	152
41	S1PR5 is essential for human natural killer cell migration toward sphingosine-1 phosphate. Journal of Allergy and Clinical Immunology, 2018, 141, 2265-2268.e1.	2.9	39
42	Geoepidemiology and Immunologic Features of Autoinflammatory Diseases: a Comprehensive Review. Clinical Reviews in Allergy and Immunology, 2018, 54, 454-479.	6.5	27
43	Familial Mediterranean fever mutations are hypermorphic mutations that specifically decrease the activation threshold of the Pyrin inflammasome. Rheumatology, 2018, 57, 100-111.	1.9	67
44	Human Naive and Memory T Cells Display Opposite Migratory Responses to Sphingosine-1 Phosphate. Journal of Immunology, 2018, 200, 551-557.	0.8	23
45	A point mutation in the <i>Ncr1</i> signal peptide impairs the development of innate lymphoid cell subsets. Oncolmmunology, 2018, 7, e1475875.	4.6	9
46	Hepatitis B Virus Blocks the CRE/CREB Complex and Prevents TLR9 Transcription and Function in Human B Cells. Journal of Immunology, 2018, 201, 2331-2344.	0.8	18
47	A Case of Type 2 Hypersensitivity to Rasburicase Diagnosed with a Natural Killer Cell Activation Assay. Frontiers in Immunology, 2018, 9, 110.	4.8	6
48	One-Year Follow-Up of Natural Killer Cell Activity in Multiple Myeloma Patients Treated With Adjuvant Lenalidomide Therapy. Frontiers in Immunology, 2018, 9, 704.	4.8	15
49	Human papillomavirus type 16 antagonizes IRF6 regulation of IL-1β. PLoS Pathogens, 2018, 14, e1007158.	4.7	21
50	Plasmacytoid dendritic cells control dengue and Chikungunya virus infections via IRF7-regulated interferon responses. ELife, 2018, 7, .	6.0	57
51	Alteration of Natural Killer cell phenotype and function in obese individuals. Clinical Immunology, 2017, 177, 12-17.	3.2	93
52	Eomes expression reports the progressive differentiation of IFNâ€Î³â€producing Th1â€like γδTÂcells. European Journal of Immunology, 2017, 47, 970-981.	2.9	33
53	Sphingosine 1-phosphate signaling through its receptor S1P ₅ promotes chromosome segregation and mitotic progression. Science Signaling, 2017, 10, .	3.6	30
54	Lateâ€onset hemophagocytic lymphohistiocytosis with neurological presentation. Clinical Case Reports (discontinued), 2017, 5, 1743-1749.	0.5	3

#	Article	IF	CITATIONS
55	Regulation of mTOR, Metabolic Fitness, and Effector Functions by Cytokines in Natural Killer Cells. Cancers, 2017, 9, 132.	3.7	24
56	High mTOR activity is a hallmark of reactive natural killer cells and amplifies early signaling through activating receptors. ELife, 2017, 6, .	6.0	65
57	Murine peripheral NKâ€cell populations originate from siteâ€specific immature NK cells more than from BMâ€derived NK cells. European Journal of Immunology, 2016, 46, 1258-1270.	2.9	12
58	NKp46â€mediated <i>Dicer1</i> inactivation results in defective NKâ€cell differentiation and effector functions in mice. European Journal of Immunology, 2016, 46, 1902-1911.	2.9	6
59	Characterization of the Inflammasome in Human Kupffer Cells in Response to Synthetic Agonists and Pathogens. Journal of Immunology, 2016, 197, 356-367.	0.8	53
60	Back to the drawing board: Understanding the complexity of hepatic innate lymphoid cells. European Journal of Immunology, 2016, 46, 2095-2098.	2.9	11
61	Adipose-Resident Group 1 Innate Lymphoid Cells Promote Obesity-Associated Insulin Resistance. Immunity, 2016, 45, 428-441.	14.3	232
62	Efficacy of the Janus kinase 1/2 inhibitor ruxolitinib in the treatment of vasculopathy associated with TMEM173 -activating mutations in 3 children. Journal of Allergy and Clinical Immunology, 2016, 138, 1752-1755.	2.9	192
63	Immune signatures of protective spleen memory CD8 T cells. Scientific Reports, 2016, 6, 37651.	3.3	15
64	Transforming growth factor–β and Notch ligands act as opposing environmental cues in regulating the plasticity of type 3 innate lymphoid cells. Science Signaling, 2016, 9, ra46.	3.6	88
65	TGF-Î ² inhibits the activation and functions of NK cells by repressing the mTOR pathway. Science Signaling, 2016, 9, ra19.	3.6	453
66	Natural Killer Cells. , 2016, , 955-961.		0
67	NKp46+ Innate Lymphoid Cells Dampen Vaginal CD8 T Cell Responses following Local Immunization with a Cholera Toxin-Based Vaccine. PLoS ONE, 2015, 10, e0143224.	2.5	9
68	PRKDC mutations associated with immunodeficiency, granuloma, and autoimmune regulator–dependent autoimmunity. Journal of Allergy and Clinical Immunology, 2015, 135, 1578-1588.e5.	2.9	84
69	Terminal NK cell maturation is controlled by concerted actions of T-bet and Zeb2 and is essential for melanoma rejection. Journal of Experimental Medicine, 2015, 212, 2015-2025.	8.5	151
70	Inherited anomalies of innate immune receptors in pediatric-onset inflammatory diseases. Autoimmunity Reviews, 2015, 14, 1147-1153.	5.8	13
71	Human natural killer cells promote crossâ€presentation of tumor cellâ€derived antigens by dendritic cells. International Journal of Cancer, 2015, 136, 1085-1094.	5.1	55
72	Unique Eomes+ NK Cell Subsets Are Present in Uterus and Decidua During Early Pregnancy. Frontiers in Immunology, 2015, 6, 646.	4.8	107

#	Article	IF	CITATIONS
73	Terminal NK cell maturation is controlled by concerted actions of T-bet and Zeb2 and is essential for melanoma rejection. Journal of Cell Biology, 2015, 211, 2113OIA260.	5.2	0
74	Activation of Natural Killer Cells in Patients with Chronic Bone and Joint Infection due to Staphylococci Expressing or Not the Small Colony Variant Phenotype. International Journal of Chronic Diseases, 2014, 2014, 1-5.	1.0	0
75	microRNA-mediated regulation of mTOR complex components facilitates discrimination between activation and anergy in CD4 T cells. Journal of Experimental Medicine, 2014, 211, 2281-2295.	8.5	57
76	Mutations in CECR1 associated with a neutrophil signature in peripheral blood. Pediatric Rheumatology, 2014, 12, 44.	2.1	88
77	PRKDC mutations associated with immunodeficiency, granuloma and aire-dependent autoimmunity. Pediatric Rheumatology, 2014, 12, .	2.1	1
78	mTOR: A gate to NK cell maturation and activation. Cell Cycle, 2014, 13, 3315-3316.	2.6	17
79	Dok1 and Dok2 proteins regulate natural killer cell development and function. EMBO Journal, 2014, 33, 1928-1940.	7.8	39
80	CCR1 Inhibition Ameliorates the Progression of Lupus Nephritis in NZB/W Mice. Journal of Immunology, 2014, 192, 886-896.	0.8	40
81	The metabolic checkpoint kinase mTOR is essential for IL-15 signaling during the development and activation of NK cells. Nature Immunology, 2014, 15, 749-757.	14.5	484
82	T-bet and Eomes instruct the development of two distinct natural killer cell lineages in the liver and in the bone marrow. Journal of Experimental Medicine, 2014, 211, 563-577.	8.5	462
83	microRNA-mediated regulation of mTOR complex components facilitates discrimination between activation and anergy in CD4 T cells. Journal of Cell Biology, 2014, 207, 2072OIA191.	5.2	0
84	Regulation of Mouse NK Cell Development and Function by Cytokines. Frontiers in Immunology, 2013, 4, 450.	4.8	155
85	ASC Controls IFN-γ Levels in an IL-18–Dependent Manner in Caspase-1–Deficient Mice Infected with Francisella novicida. Journal of Immunology, 2013, 191, 3847-3857.	0.8	31
86	S1PR5 is pivotal for the homeostasis of patrolling monocytes. European Journal of Immunology, 2013, 43, 1667-1675.	2.9	49
87	Monitoring NK cell activity in patients with hematological malignancies. Oncolmmunology, 2013, 2, e26011.	4.6	40
88	Negative Regulation of NKG2D Expression by IL-4 in Memory CD8 T Cells. Journal of Immunology, 2012, 189, 3480-3489.	0.8	27
89	T inflammatory memory CD8 T cells participate to antiviral response and generate secondary memory cells with an advantage in XCL1 production. Immunologic Research, 2012, 52, 284-293.	2.9	21
90	Natural killer cells and T cells induce different types ofskin reactions during recall responses to haptens. European Journal of Immunology, 2012, 42, 80-88.	2.9	44

#	Article	IF	CITATIONS
91	Fate mapping analysis of lymphoid cells expressing the NKp46 cell surface receptor. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18324-18329.	7.1	297
92	C-protein-coupled receptors in control of natural killer cell migration. Trends in Immunology, 2011, 32, 486-492.	6.8	54
93	Monocytes control natural killer cell differentiation to effector phenotypes. Blood, 2011, 117, 4511-4518.	1.4	80
94	Sequential desensitization of CXCR4 and S1P5 controls natural killer cell trafficking. Blood, 2011, 118, 4863-4871.	1.4	119
95	Genetic Labeling Reveals Altered Turnover and Stability of Innate Lymphocytes in Latent Mouse Cytomegalovirus Infection. Journal of Immunology, 2011, 186, 2918-2925.	0.8	6
96	Cutting Edge: CD8+ T Cell Priming in the Absence of NK Cells Leads to Enhanced Memory Responses. Journal of Immunology, 2011, 186, 3304-3308.	0.8	123
97	Confinement of Activating Receptors at the Plasma Membrane Controls Natural Killer Cell Tolerance. Science Signaling, 2011, 4, ra21.	3.6	122
98	NK-cell education: KIR-S come into play. Blood, 2010, 115, 1110-1111.	1.4	2
99	CD137 in NK cells. Blood, 2010, 115, 2987-2988.	1.4	11
100	Natural Killer Cells Accumulate in Lungâ€Draining Lymph Nodes and Regulate Airway Eosinophilia in a Murine Model of Asthma. Scandinavian Journal of Immunology, 2010, 72, 118-127.	2.7	31
101	Interactions between Human NK Cells and Macrophages in Response to <i>Salmonella</i> Infection. Journal of Immunology, 2009, 182, 4339-4348.	0.8	100
102	Maturation of mouse NK cells is a 4-stage developmental program. Blood, 2009, 113, 5488-5496.	1.4	643
103	Mouse CD146/MCAM is a marker of natural killer cell maturation. European Journal of Immunology, 2008, 38, 2855-2864.	2.9	44
104	Intrasplenic trafficking of natural killer cells is redirected by chemokines upon inflammation. European Journal of Immunology, 2008, 38, 2076-2084.	2.9	51
105	Functions of natural killer cells. Nature Immunology, 2008, 9, 503-510.	14.5	3,070
106	Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling. Genome Biology, 2008, 9, R17.	9.6	472
107	Cutting Edge: Priming of NK Cells by IL-18. Journal of Immunology, 2008, 181, 1627-1631.	0.8	280
108	Identification, activation, and selective <i>in vivo</i> ablation of mouse NK cells via NKp46. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104. 3384-3389.	7.1	413

#	Article	IF	CITATIONS
109	Germâ€line and rearranged <i>Tcrd</i> transcription distinguish <i>bona fide</i> NK cells and NKâ€like γδ T cells. European Journal of Immunology, 2007, 37, 1442-1452.	2.9	72
110	Natural killer cell trafficking in vivo requires a dedicated sphingosine 1-phosphate receptor. Nature Immunology, 2007, 8, 1337-1344.	14.5	375
111	The trafficking of natural killer cells. Immunological Reviews, 2007, 220, 169-182.	6.0	460
112	Natural killer cells: from CD3â^'NKp46+ to post-genomics meta-analyses. Current Opinion in Immunology, 2007, 19, 365-372.	5.5	117
113	NK cell development: Gas matters. Nature Immunology, 2006, 7, 702-704.	14.5	25
114	Maintenance of CCL5 mRNA stores by post-effector and memory CD8 T cells is dependent on transcription and is coupled to increased mRNA stability. European Journal of Immunology, 2006, 36, 2745-2754.	2.9	21
115	Cell-Autonomous CCL5 Transcription by Memory CD8 T Cells Is Regulated by IL-4. Journal of Immunology, 2006, 177, 4451-4457.	0.8	20
116	Natural-killer cells and dendritic cells: "l'union fait la force― Blood, 2005, 106, 2252-2258.	1.4	520
117	Poxvirus semaphorin A39R inhibits phagocytosis by dendritic cells and neutrophils. European Journal of Immunology, 2005, 35, 391-398.	2.9	46
118	Plexin C1 Engagement on Mouse Dendritic Cells by Viral Semaphorin A39R Induces Actin Cytoskeleton Rearrangement and Inhibits Integrin-Mediated Adhesion and Chemokine-Induced Migration. Journal of Immunology, 2005, 174, 51-59.	0.8	80
119	Nectin-like Protein 2 Defines a Subset of T-cell Zone Dendritic Cells and Is a Ligand for Class-I-restricted T-cell-associated Molecule. Journal of Biological Chemistry, 2005, 280, 21955-21964.	3.4	169
120	Dendritic cell function in mice lacking Plexin C1. International Immunology, 2005, 17, 943-950.	4.0	37
121	Natural killer cell–dendritic cell crosstalk in the initiation of immune responses. Expert Opinion on Biological Therapy, 2005, 5, S49-S59.	3.1	99
122	No defect in T-cell priming, secondary response, or tolerance induction in response to inhaled antigens in Fms-like tyrosine kinase 3 ligand–deficient mice. Journal of Allergy and Clinical Immunology, 2005, 115, 192-199.	2.9	23
123	A1/Bfl-1 expression is restricted to TCR engagement in T lymphocytes. Cell Death and Differentiation, 2003, 10, 1059-1067.	11.2	42
124	Cutting Edge: Immediate RANTES Secretion by Resting Memory CD8 T Cells Following Antigenic Stimulation. Journal of Immunology, 2003, 170, 1615-1619.	0.8	48
125	In Vivo Impact of CpG1826 Oligodeoxynucleotide on CD8 T Cell Primary Responses and Survival. Journal of Immunology, 2003, 171, 2995-3002.	0.8	23
126	Hyperproliferative Response of a Monoclonal Memory CD8 T Cell Population Is Characterized by an Increased Frequency of Clonogenic Precursors. Journal of Immunology, 2002, 168, 2147-2153.	0.8	5

#	Article	IF	CITATIONS
127	Differential In Vivo Persistence of Two Subsets of Memory Phenotype CD8 T Cells Defined by CD44 and CD122 Expression Levels. Journal of Immunology, 2002, 168, 2704-2711.	0.8	36
128	Mechanism of Measles Virus–Induced Suppression of Inflammatory Immune Responses. Immunity, 2001, 14, 69-79.	14.3	128
129	Phénotype et fonctions des lymphocytes T CD8+mémoire. Medecine/Sciences, 2001, 17, 1105-1111.	0.2	1
130	Involvement of inhibitory NKRs in the survival of a subset of memory-phenotype CD8+ T cells. Nature Immunology, 2001, 2, 430-435.	14.5	153
131	Protection against experimental autoimmune encephalomyelitis by a proteasome modulator. Journal of Neuroimmunology, 2001, 118, 233-244.	2.3	26
132	Characterization at the Single-Cell Level of Naive and Primed CD8 T Cell Cytokine Responses. Cellular Immunology, 2000, 206, 16-25.	3.0	8
133	Memory CD44int CD8 T cells show increased proliferative responses and IFN-Î ³ production following antigenic challenge in vitro. International Immunology, 1999, 11, 699-706.	4.0	30