List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2805127/publications.pdf Version: 2024-02-01

LUN ARE

#	Article	IF	CITATIONS
1	Molecular mechanisms for the photoperiodic regulation of flowering in soybean. Journal of Integrative Plant Biology, 2021, 63, 981-994.	4.1	107
2	Characterization of chlorophyll-deficient soybean [Glycine max (L.) Merr.] mutants obtained by ion-beam irradiation reveals concomitant reduction in isoflavone levels. Genetic Resources and Crop Evolution, 2021, 68, 1213-1223.	0.8	5
3	Site-directed mutagenesis by biolistic transformation efficiently generates inheritable mutations in a targeted locus in soybean somatic embryos and transgene-free descendants in the T1 generation. Transgenic Research, 2021, 30, 77-89.	1.3	9
4	FT5a interferes with the Dt1â€AP1 feedback loop to control flowering time and shoot determinacy in soybean. Journal of Integrative Plant Biology, 2021, 63, 1004-1020.	4.1	37
5	Overcoming the genetic compensation response of soybean florigens to improve adaptation and yield at low latitudes. Current Biology, 2021, 31, 3755-3767.e4.	1.8	42
6	Functional Divergence of G and Its Homologous Genes for Green Pigmentation in Soybean Seeds. Frontiers in Plant Science, 2021, 12, 796981.	1.7	0
7	Simultaneous induction of mutant alleles of two allergenic genes in soybean by using site-directed mutagenesis. BMC Plant Biology, 2020, 20, 513.	1.6	30
8	A Soybean Deletion Mutant That Moderates the Repression of Flowering by Cool Temperatures. Frontiers in Plant Science, 2020, 11, 429.	1.7	9
9	Structural features of the aleurone layer of the seed coat associated with imbibition injury in soybean. Breeding Science, 2019, 69, 364-370.	0.9	7
10	Functional divergence between soybean FLOWERING LOCUS T orthologues FT2a and FT5a in post-flowering stem growth. Journal of Experimental Botany, 2019, 70, 3941-3953.	2.4	35
11	Recessive Resistance Governed by a Major Quantitative Trait Locus Restricts Clover Yellow Vein Virus in Mechanically but Not Graft-Inoculated Cultivated Soybeans. Molecular Plant-Microbe Interactions, 2019, 32, 1026-1037.	1.4	3
12	Identification of quantitative trait loci for increased α-tocopherol biosynthesis in wild soybean using a high-density genetic map. BMC Plant Biology, 2019, 19, 510.	1.6	18
13	Characterization and quantitative trait locus mapping of late-flowering from a Thai soybean cultivar introduced into a photoperiod-insensitive genetic background. PLoS ONE, 2019, 14, e0226116.	1.1	20
14	Title is missing!. , 2019, 14, e0226116.		0
15	Title is missing!. , 2019, 14, e0226116.		0
16	Title is missing!. , 2019, 14, e0226116.		0
17	Title is missing!. , 2019, 14, e0226116.		0
18	Simultaneous site-directed mutagenesis of duplicated loci in soybean using a single guide RNA. Plant Cell Reports, 2018, 37, 553-563.	2.8	93

#	Article	IF	CITATIONS
19	Evaluation of seed components of wild soybean (<i>Glycine soja</i>) collected in Japan using near-infrared reflectance spectroscopy. Plant Genetic Resources: Characterisation and Utilisation, 2018, 16, 94-102.	0.4	6
20	Transcription of soybean retrotransposon SORE-1 is temporally upregulated in developing ovules. Planta, 2018, 248, 1331-1337.	1.6	3
21	Chromosomal distribution of soybean retrotransposon SORE-1 suggests its recent preferential insertion into euchromatic regions. Chromosome Research, 2018, 26, 199-210.	1.0	6
22	Quantitative trait loci mapping of Meloidogyne incognita and M.Âhapla resistance in a recombinant inbred line population of soybean. Nematology, 2018, 20, 525-537.	0.2	4
23	Loss of Function of the E1-Like-b Gene Associates With Early Flowering Under Long-Day Conditions in Soybean. Frontiers in Plant Science, 2018, 9, 1867.	1.7	31
24	Molecular-genetic study on flowering and growth habit of soybean by use of germplasm. Ikushugaku Kenkyu, 2018, 20, 159-163.	0.1	0
25	Frequent generation of mutants with coincidental changes in multiple traits via ion-beam irradiation in soybean. Genes and Genetic Systems, 2017, 92, 153-161.	0.2	11
26	lsolation and molecular characterization of a <i>Lotus japonicus</i> <i>R2R3-MYB</i> subgroup 7 transcription factor gene. Plant Biotechnology, 2017, 34, 45-49.	0.5	9
27	Quantitative Trait Locus Mapping of Soybean Maturity Gene <i>E6</i> . Crop Science, 2017, 57, 2547-2554.	0.8	29
28	Natural diversity of seed α-tocopherol ratio in wild soybean (<i>Glycine soja</i>) germplasm collection. Breeding Science, 2016, 66, 653-657.	0.9	9
29	Quantitative trait locus mapping of soybean maturity gene <i>E5</i> . Breeding Science, 2016, 66, 407-415.	0.9	56
30	A soybean quantitative trait locus that promotes flowering under long days is identified as <i>FT5a</i> , a <i>FLOWERING LOCUS T</i> ortholog. Journal of Experimental Botany, 2016, 67, 5247-5258.	2.4	83
31	A recessive allele for delayed flowering at the soybean maturity locus E9 is a leaky allele of FT2a, a FLOWERING LOCUS T ortholog. BMC Plant Biology, 2016, 16, 20.	1.6	159
32	QTL mapping for flowering time in different latitude in soybean. Euphytica, 2015, 206, 725-736.	0.6	27
33	The Soybean-Specific Maturity Gene <i>E1</i> Family of Floral Repressors Controls Night-Break Responses through Down-Regulation of <i>FLOWERING LOCUS T</i> Orthologs Â. Plant Physiology, 2015, 168, 1735-1746.	2.3	87
34	A Single-Nucleotide Polymorphism in an Endo-1,4-β-Glucanase Gene Controls Seed Coat Permeability in Soybean. PLoS ONE, 2015, 10, e0128527.	1.1	35
35	Mapping quantitative trait loci for yield-related traits in soybean (Glycine max L.). Breeding Science, 2014, 64, 282-290.	0.9	8
36	Natural variation in the genes responsible for maturity loci E1, E2, E3 and E4 in soybean. Annals of Botany, 2014, 113, 429-441.	1.4	156

#	Article	IF	CITATIONS
37	A New Dominant Gene <i>E9</i> Conditions Early Flowering and Maturity in Soybean. Crop Science, 2014, 54, 2529-2535.	0.8	173
38	Genetic variation in four maturity genes affects photoperiod insensitivity and PHYA-regulated post-flowering responses of soybean. BMC Plant Biology, 2013, 13, 91.	1.6	182
39	Genetic Variation in Soybean at the Maturity Locus E4 Is Involved in Adaptation to Long Days at High Latitudes. Agronomy, 2013, 3, 117-134.	1.3	86
40	Invitation to soybean research. Ikushugaku Kenkyu, 2013, 15, 51-56.	0.1	1
41	Genetic and molecular bases of photoperiod responses of flowering in soybean. Breeding Science, 2012, 61, 531-543.	0.9	144
42	An Active CACTA-Family Transposable Element is Responsible for Flower Variegation in Wild Soybean <i>Glycine soja</i> . Plant Genome, 2012, 5, 62-70.	1.6	13
43	Optimization of ion-beam irradiation for mutagenesis in soybean: effects on plant growth and production of visibly altered mutants. Plant Biotechnology, 2011, 28, 323-329.	0.5	28
44	Varietal Differences and Morphology of Cleistogamy in Soybean. Crop Science, 2010, 50, 185-190.	0.8	11
45	Establishment of new method for analysis of starch contents and varietal differences in soybean seeds. Breeding Science, 2010, 60, 160-163.	0.9	40
46	Two Coordinately Regulated Homologs of <i>FLOWERING LOCUS T</i> Are Involved in the Control of Photoperiodic Flowering in Soybean. Plant Physiology, 2010, 154, 1220-1231.	2.3	298
47	Molecular Cloning and Linkage Mapping of Cryptochrome Multigene Family in Soybean. Plant Genome, 2009, 2, .	1.6	27
48	Genetic Redundancy in Soybean Photoresponses Associated With Duplication of the Phytochrome A Gene. Genetics, 2008, 180, 995-1007.	1.2	335
49	Genetic analysis and biochemical characterization of the high lutein trait of wild soybean (Glycine) Tj ETQq1 10.	784314 rg 0.9	gBT ₇ /Overloci
50	Genetic relationship between lipid content and linolenic acid concentration in soybean seeds. Breeding Science, 2008, 58, 361-366.	0.9	49
51	Simultaneous Accumulation of High Contents of .ALPHATocopherol and Lutein is Possible in Seeds of Soybean (Glycine max (L.) Merr.). Breeding Science, 2007, 57, 297-304.	0.9	22
52	Identification and Characterization of Wild Soybean (Glycine soja Sieb. et Zecc.) Strains with High Lutein Content. Breeding Science, 2006, 56, 231-234.	0.9	45
53	Marker-assisted Analysis for Soybean Hard Seededness with Isozyme and Simple Sequence Repeat Loci. Breeding Science, 2004, 54, 133-139.	0.9	20
54	Photoperiodâ€Insensitive Japanese Soybean Landraces Differ at Two Maturity Loci. Crop Science, 2003, 43, 1300-1304.	0.8	70

#	Article	IF	CITATIONS
55	Quantitative Trait Locus Analysis of Stalk Strength in Four Maize Populations. Crop Science, 2003, 43, 13.	0.8	132
56	Soybean Maturity Genes Associated with Seed Coat Pigmentation and Cracking in Response to Low Temperatures. Crop Science, 1999, 39, 1657-1662.	0.8	38
57	Genetic structure of the Japanese soybean population. Genetic Resources and Crop Evolution, 1999, 46, 441-453.	0.8	20
58	RFLPs of chloroplast and mitochondrial DNA in wild soybean, Glycine soja, growing in China. Genetic Resources and Crop Evolution, 1998, 45, 433-439.	0.8	32
59	A marker-assisted analysis of bolting tendency in sugar beet (Beta vulgaris L.). Euphytica, 1997, 94, 137-144.	0.6	6
60	A gene complex for annual habit in sugar beet (Beta vulgaris L.). Euphytica, 1997, 94, 129-135.	0.6	31