Alessandro Vitale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/280441/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	StresSeed: The Unfolded Protein Response During Seed Development. Frontiers in Plant Science, 2022, 13, 869008.	3.6	4
2	Current Methods to Unravel the Functional Properties of Lysosomal Ion Channels and Transporters. Cells, 2022, 11, 921.	4.1	7
3	Two Î ³ -zeins induce the unfolded protein response. Plant Physiology, 2021, 187, 1428-1444.	4.8	7
4	Progressive Aggregation of 16 kDa Gamma-Zein during Seed Maturation in Transgenic Arabidopsis thaliana. International Journal of Molecular Sciences, 2021, 22, 12671.	4.1	3
5	Russell-Like Bodies in Plant Seeds Share Common Features With Prolamin Bodies and Occur Upon Recombinant Protein Production. Frontiers in Plant Science, 2019, 10, 777.	3.6	10
6	The Lateral Root Cap Acts as an Auxin Sink that Controls Meristem Size. Current Biology, 2019, 29, 1199-1205.e4.	3.9	72
7	Expression of CLAVATA3 fusions indicates rapid intracellular processing and a role of ERAD. Plant Science, 2018, 271, 67-80.	3.6	5
8	Protein Biosynthesis and Maturation in the ER. Methods in Molecular Biology, 2018, 1691, 179-189.	0.9	6
9	Maize 16-kD Î ³ -zein forms very unusual disulfide-bonded polymers in the endoplasmic reticulum: implications for prolamin evolution. Journal of Experimental Botany, 2018, 69, 5013-5027.	4.8	16
10	Where do Protein Bodies of Cereal Seeds Come From?. Frontiers in Plant Science, 2016, 7, 1139.	3.6	45
11	The Arabidopsis tonoplast is almost devoid of glycoproteins with complex <i>N</i> -glycans, unlike the rat lysosomal membrane. Journal of Experimental Botany, 2016, 67, 1769-1781.	4.8	20
12	The Induction of Recombinant Protein Bodies in Different Subcellular Compartments Reveals a Cryptic Plastid-Targeting Signal in the 27-kDa γ-Zein Sequence. Frontiers in Bioengineering and Biotechnology, 2014, 2, 67.	4.1	19
13	More players in the plant unfolded response. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19189-19190.	7.1	1
14	Traffic Routes and Signals for the Tonoplast. Traffic, 2013, 14, 622-628.	2.7	58
15	Comparison of Membrane Targeting Strategies for the Accumulation of the Human Immunodeficiency Virus p24 Protein in Transgenic Tobacco. International Journal of Molecular Sciences, 2013, 14, 13241-13265.	4.1	6
16	The putative K+ channel subunit AtKCO3 forms stable dimers in Arabidopsis. Frontiers in Plant Science, 2012, 3, 251.	3.6	22
17	How are tonoplast proteins degraded?. Plant Signaling and Behavior, 2011, 6, 1809-1812.	2.4	8
18	Assembly and Sorting of the Tonoplast Potassium Channel AtTPK1 and Its Turnover by Internalization into the Vacuole Â. Plant Physiology, 2011, 156, 1783-1796.	4.8	71

ALESSANDRO VITALE

#	Article	IF	CITATIONS
19	An engineered C-terminal disulfide bond can partially replace the phaseolin vacuolar sorting signal. Plant Journal, 2010, 61, 782-791.	5.7	18
20	Recombinant human GAD65 accumulates to high levels in transgenic tobacco plants when expressed as an enzymatically inactive mutant. Plant Biotechnology Journal, 2010, 8, 862-872.	8.3	22
21	Calreticulins are not all the same. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13151-13152.	7.1	7
22	High-level expression of the HIV-1 Pr55gag polyprotein in transgenic tobacco chloroplasts. Planta, 2009, 229, 1109-1122.	3.2	95
23	Plant-based strategies aimed at expressing HIV antigens and neutralizing antibodies at high levels. Nef as a case study. Transgenic Research, 2009, 18, 499-512.	2.4	26
24	Transgenic chloroplasts are efficient sites for highâ€yield production of the vaccinia virus envelope protein A27L in plant cellsâ€. Plant Biotechnology Journal, 2009, 7, 577-591.	8.3	35
25	Plants as biofactories for the production of subunit vaccines against bio-security-related bacteria and virusesâ~†. Vaccine, 2009, 27, 3463-3466.	3.8	17
26	Translational fusion of chloroplast-expressed human papillomavirus type 16 L1 capsid protein enhances antigen accumulation in transplastomic tobacco. Transgenic Research, 2008, 17, 1091-1102.	2.4	78
27	Endoplasmic Reticulum Quality Control and the Unfolded Protein Response: Insights from Plants. Traffic, 2008, 9, 1581-1588.	2.7	171
28	Anchorage to the cytosolic face of the endoplasmic reticulum membrane: a new strategy to stabilize a cytosolic recombinant antigen in plants. Plant Biotechnology Journal, 2008, 6, 560-575.	8.3	29
29	Protein Domains Involved in Assembly in the Endoplasmic Reticulum Promote Vacuolar Delivery when Fused to Secretory GFP, Indicating a Protein Quality Control Pathway for Degradation in the Plant Vacuole. Molecular Plant, 2008, 1, 1067-1076.	8.3	27
30	The human immunodeficiency virus antigen Nef forms protein bodies in leaves of transgenic tobacco when fused to zeolin. Journal of Experimental Botany, 2008, 59, 2815-2829.	4.8	59
31	Plant endoplasmin supports the protein secretory pathway and has a role in proliferating tissues. Plant Journal, 2006, 48, 657-673.	5.7	56
32	Retention of a Bean Phaseolin/Maize γ-Zein Fusion in the Endoplasmic Reticulum Depends on Disulfide Bond Formation. Plant Cell, 2006, 18, 2608-2621.	6.6	49
33	The ER Folding Helpers: AÂConnection Between Protein Maturation, Stress Responses and Plant Development. Plant Cell Monographs, 2006, , 45-74.	0.4	Ο
34	The phaseolin vacuolar sorting signal promotes transient, strong membrane association and aggregation of the bean storage protein in transgenic tobacco. Journal of Experimental Botany, 2005, 56, 1379-1387.	4.8	35
35	Sorting of proteins to storage vacuoles: how many mechanisms?. Trends in Plant Science, 2005, 10, 316-323.	8.8	180
36	Recombinant Pharmaceuticals from Plants: The Plant Endomembrane System as Bioreactor. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2005, 5, 216-225.	3.4	91

ALESSANDRO VITALE

#	Article	IF	CITATIONS
37	Zeolin. A New Recombinant Storage Protein Constructed Using Maize Î ³ -Zein and Bean Phaseolin. Plant Physiology, 2004, 136, 3447-3456.	4.8	116
38	ldentification of the Protein Storage Vacuole and Protein Targeting to the Vacuole in Leaf Cells of Three Plant Species. Plant Physiology, 2004, 134, 625-639.	4.8	114
39	Protein Quality Control Mechanisms and Protein Storage in the Endoplasmic Reticulum. A Conflict of Interests?. Plant Physiology, 2004, 136, 3420-3426.	4.8	99
40	A novel Câ€ŧerminal sequence from barley polyamine oxidase is a vacuolar sorting signal. Plant Journal, 2004, 40, 410-418.	5.7	44
41	C-terminal extension of phaseolin with a short methionine-rich sequence can inhibit trimerisation and result in high instability. Plant Molecular Biology, 2003, 51, 885-894.	3.9	9
42	A Phaseolin Domain Involved Directly in Trimer Assembly Is a Determinant for Binding by the Chaperone BiP. Plant Cell, 2003, 15, 2464-2475.	6.6	40
43	The C-terminal Extension of a Hybrid Immunoglobulin A/G Heavy Chain Is Responsible for Its Golgi-mediated Sorting to the Vacuole. Molecular Biology of the Cell, 2003, 14, 2592-2602.	2.1	29
44	Physical methods. Plant Molecular Biology, 2002, 50, 825-836.	3.9	1
45	The C-terminal tetrapeptide of phaseolin is sufficient to target green fluorescent protein to the vacuole. Journal of Plant Physiology, 2001, 158, 499-503.	3.5	40
46	The Endomembrane System and the Problem of Protein Sorting: Fig. 1 Plant Physiology, 2001, 125, 115-118.	4.8	50
47	Uncovering Secretory Secrets. Plant Cell, 2001, 13, 1260-1262.	6.6	10
48	Influence of KDEL on the Fate of Trimeric or Assembly-Defective Phaseolin: Selective Use of an Alternative Route to Vacuoles. Plant Cell, 2001, 13, 1109.	6.6	1
49	Vacuolar Sorting Determinants Within a Plant Storage Protein Trimer Act Cumulatively. Traffic, 2001, 2, 737-741.	2.7	25
50	Uncovering Secretory Secrets: Inhibition of Endoplasmic Reticulum (ER) Glucosidases Suggests a Critical Role for ER Quality Control in Plant Growth and Development. Plant Cell, 2001, 13, 1260.	6.6	2
51	Influence of KDEL on the Fate of Trimeric or Assembly-Defective Phaseolin: Selective Use of an Alternative Route to Vacuoles. Plant Cell, 2001, 13, 1109-1126.	6.6	81
52	Assembly, Secretion, and Vacuolar Delivery of a Hybrid Immunoglobulin in Plants. Plant Physiology, 2000, 123, 1483-1494.	4.8	78
53	The Endoplasmic Reticulum: Gateway of the Secretory Pathway. Plant Cell, 1999, 11, 615.	6.6	13
54	The Endoplasmic Reticulum—Gateway of the Secretory Pathway. Plant Cell, 1999, 11, 615-628.	6.6	284

ALESSANDRO VITALE

#	Article	IF	CITATIONS
55	What do proteins need to reach different vacuoles?. Trends in Plant Science, 1999, 4, 149-155.	8.8	182
56	The plant endoplasmic reticulum and quality control of secretory proteins. Current Plant Science and Biotechnology in Agriculture, 1999, , 393-396.	0.0	0
57	BiP and Calreticulin Form an Abundant Complex That Is Independent of Endoplasmic Reticulum Stress. Plant Cell, 1998, 10, 813-823.	6.6	92
58	Sorting of Phaseolin to the Vacuole Is Saturable and Requires a Short C-Terminal Peptide. Plant Cell, 1998, 10, 1031-1042.	6.6	171
59	Free Ricin A Chain, Proricin, and Native Toxin Have Different Cellular Fates When Expressed in Tobacco Protoplasts. Journal of Biological Chemistry, 1998, 273, 14194-14199.	3.4	86
60	The Rate of Phaseolin Assembly Is Controlled by the Glucosylation State of Its N-Linked Oligosaccharide Chains. Plant Cell, 1997, 9, 597.	6.6	9
61	The Rate of Phaseolin Assembly Is Controlled by the Glucosylation State of Its N-Linked Oligosaccharide Chains Plant Cell, 1997, 9, 597-609.	6.6	41
62	Protein quality control along the route to the plant vacuole Plant Cell, 1997, 9, 1869-1880.	6.6	188
63	Bean (Phaseolus vulgaris L.) protoplasts as a model system to study the expression and stability of recombinant seed proteins. Plant Cell Reports, 1997, 16, 705-709.	5.6	6
64	The secretory nature of the lesion of carrot cell variant ts11, rescuable by endochitinase. Planta, 1997, 203, 381-389.	3.2	21
65	Cercis siliquastrum L.: A Comparative Study of Endosperm and Embryo Development and Reserve Accumulation. International Journal of Plant Sciences, 1995, 156, 181-187.	1.3	7
66	Chapter 21 Import into the Endoplasmic Reticulum. Methods in Cell Biology, 1995, 50, 295-308.	1.1	11
67	Chapter 24 The Use of Protoplasts to Study Protein Synthesis and Transport by the Plant Endomembrane System. Methods in Cell Biology, 1995, 50, 335-348.	1.1	24
68	Assembly and Intracellular Transport of Phaseolin, the Major Storage Protein of Phaseolus vulgaris L Journal of Plant Physiology, 1995, 145, 648-653.	3.5	20
69	Binding of BiP to an assembly-defective protein in plant cells. Plant Journal, 1994, 5, 103-110.	5.7	87
70	The Role of the Endoplasmic Reticulum in Protein Synthesis, Modification and Intracellular Transport. Journal of Experimental Botany, 1993, 44, 1417-1444.	4.8	119
71	The alpha-amylase inhibitor of bean seed: two-step proteolytic maturation in the protein storage vacuoles of the developing cotyledon. Physiologia Plantarum, 1992, 85, 425-432.	5.2	25
72	Bean homologs of the mammalian glucose-regulated proteins: induction by tunicamycin and interaction with newly synthesized seed storage proteins in the endoplasmic reticulum. Plant Journal, 1992, 2, 443-455.	5.7	94

#	Article	IF	CITATIONS
73	Sorting of proteins to the vacuoles of plant cells. BioEssays, 1992, 14, 151-160.	2.5	54
74	The signal peptide of human preproendothelin-1. FEBS Letters, 1991, 286, 91-94.	2.8	19
75	A Saporin-6 cDNA containing a precursor sequence coding for a carboxyl-terminal extension. FEBS Letters, 1991, 291, 285-288.	2.8	25
76	Expression of the wild-type and mutated vacuolar storage protein phaseolin in Xenopus oocytes reveals relationships between assembly and intracellular transport. FEBS Journal, 1991, 202, 959-968.	0.2	54
77	Mannose Analog 1-Deoxymannojirimycin Inhibits the Golgi-Mediated Processing of Bean Storage Glycoproteins. Plant Physiology, 1989, 89, 1079-1084.	4.8	14
78	Lectin-like proteins accumulate as fragmentation products in bean seed protein bodies. FEBS Letters, 1989, 250, 157-160.	2.8	20
79	1-Deoxymannojirimycin inhibits Golgi-mediated processing of glycoprotein in Xenopus oocytes. FEBS Letters, 1988, 234, 489-492.	2.8	9
80	The position of the oligosaccharide side-chains of phytohemagglutinin and their accessibility to glycosidases determines their subsequent processing in the Golgi. FEBS Journal, 1986, 158, 655-661.	0.2	65
81	Regulation of processing of a plant glycoprotein in the Golgi complex: A comparative study usingXenopus oocytes. Planta, 1986, 169, 108-116.	3.2	31
82	Molecular analysis of a phytohemagglutinin-defective cultivar of Phaseolus vulgaris L Planta, 1985, 166, 201-207.	3.2	18
83	Glycosylation is not needed for the intracellular transport of phytohemagglutinin in developing Phaseolus vulgaris cotyledons and for the maintenance of its biological activities. Physiologia Plantarum, 1985, 65, 15-22.	5.2	61
84	Gene Expression and Synthesis of Phytohemagglutinin in the Embryonic Axes of Developing <i>Phaseolus vulgaris</i> Seeds. Plant Physiology, 1984, 76, 791-796.	4.8	12
85	Biosynthesis and processing of phytohemagglutinin in developing bean cotyledons. FEBS Journal, 1984, 141, 97-104.	0.2	51
86	Phaseolus vulgaris phytohemagglutinin contains high-mannose and modified oligosaccharide chains. Planta, 1984, 160, 256-263.	3.2	51
87	Genetic control of a membrane component and zein deposition in maize endosperm. Molecular Genetics and Genomics, 1983, 192, 316-321.	2.4	24
88	Reduced Soluble Proteins Associated with Maize Endosperm Protein Bodies. Journal of Experimental Botany, 1982, 33, 439-448.	4.8	36
89	Peptide mapping of IEF zein components from maize. Plant Science Letters, 1980, 18, 57-64.	1.8	34
90	Variations in carbohydrate and lipid content and in osmotic potential of watermelon cotyledons treated with benzyladenine. Plant Science Letters, 1978, 12, 199-207.	1.8	23