Melania E Cristescu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2803913/publications.pdf

Version: 2024-02-01

80 papers 4,409 citations

38 h-index 62 g-index

89 all docs 89 docs citations

89 times ranked

5498 citing authors

#	Article	IF	CITATIONS
1	Genotype diversity promotes the persistence of <i>Daphnia</i> populations exposed to severe copper stress. Journal of Evolutionary Biology, 2022, 35, 265-277.	1.7	7
2	Environmental <scp>RNA</scp> degrades more rapidly than environmental <scp>DNA</scp> across a broad range of <scp>pH</scp> conditions. Molecular Ecology Resources, 2022, 22, 2640-2650.	4.8	17
3	Environmental nucleic acids: A fieldâ€based comparison for monitoring freshwater habitats using <scp>eDNA</scp> and <scp>eRNA</scp> . Molecular Ecology Resources, 2022, 22, 2928-2940.	4.8	14
4	Thermal stratification and fish thermal preference explain vertical eDNA distributions in lakes. Molecular Ecology, 2021, 30, 3083-3096.	3.9	55
5	Freshwater zooplankton metapopulations and metacommunities respond differently to environmental and spatial variation. Ecology, 2021, 102, e03224.	3.2	8
6	Speciation inDaphnia. Molecular Ecology, 2021, 30, 1398-1418.	3.9	7
7	Assessment of current taxonomic assignment strategies for metabarcoding eukaryotes. Molecular Ecology Resources, 2021, 21, 2190-2203.	4.8	35
8	Environmental RNA: A Revolution in Ecological Resolution?. Trends in Ecology and Evolution, 2021, 36, 601-609.	8.7	84
9	Towards reproducible metabarcoding data: Lessons from an international cross″aboratory experiment. Molecular Ecology Resources, 2021, , .	4.8	25
10	Integrating physiology and environmental dynamics to operationalize environmental DNA (eDNA) as a means to monitor freshwater macroâ€organism abundance. Molecular Ecology, 2021, 30, 6531-6550.	3.9	38
11	Release and degradation of environmental DNA and RNA in a marine system. Science of the Total Environment, 2020, 704, 135314.	8.0	126
12	Horizon scan of conservation issues for inland waters in Canada. Canadian Journal of Fisheries and Aquatic Sciences, 2020, 77, 869-881.	1.4	10
13	Breaking ecological barriers: Anthropogenic disturbance leads to habitat transitions, hybridization, and high genetic diversity. Science of the Total Environment, 2020, 740, 140046.	8.0	13
14	Alternative splicing is highly variable among Daphnia pulex lineages in response to acute copper exposure. BMC Genomics, 2020, 21, 433.	2.8	15
15	Metal exposure causes rDNA copy number to fluctuate in mutation accumulation lines of Daphnia pulex. Aquatic Toxicology, 2020, 226, 105556.	4.0	5
16	Benefits of increased colonist quantity and genetic diversity for colonization depend on colonist identity. Oikos, 2019, 128, 1761-1771.	2.7	5
17	Can Environmental RNA Revolutionize Biodiversity Science?. Trends in Ecology and Evolution, 2019, 34, 694-697.	8.7	130
18	Trophic structure modulates community rescue following acidification. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190856.	2.6	22

#	Article	IF	CITATIONS
19	Mixed evidence for adaptation to environmental pollution. Evolutionary Applications, 2019, 12, 1259-1273.	3.1	28
20	Variation in transcriptional responses to copper exposure across Daphnia pulex lineages. Aquatic Toxicology, 2019, 210, 85-97.	4.0	23
21	The evolution of reproductive isolation in Daphnia. BMC Evolutionary Biology, 2019, 19, 216.	3.2	10
22	Accelerated rates of large-scale mutations in the presence of copper and nickel. Genome Research, 2019, 29, 64-73.	5.5	13
23	Fitness and Genomic Consequences of Chronic Exposure to Low Levels of Copper and Nickel in Daphnia pulex Mutation Accumulation Lines. G3: Genes, Genomes, Genetics, 2019, 9, 61-71.	1.8	10
24	Optimization and performance testing of a sequence processing pipeline applied to detection of nonindigenous species. Evolutionary Applications, 2018, 11, 891-905.	3.1	23
25	Proteomic Profile of <i>Daphnia pulex</i> using Dataâ€Independent Acquisition Mass Spectrometry and Ion Mobility Separation. Proteomics, 2018, 18, e1700460.	2.2	7
26	Bioinformatics for Biomonitoring: Species Detection and Diversity Estimates Across Next-Generation Sequencing Platforms. Advances in Ecological Research, 2018, , 1-32.	2.7	3
27	Uses and Misuses of Environmental DNA in Biodiversity Science and Conservation. Annual Review of Ecology, Evolution, and Systematics, 2018, 49, 209-230.	8.3	218
28	Metabarcoding using multiplexed markers increases species detection in complex zooplankton communities. Evolutionary Applications, 2018, 11, 1901-1914.	3.1	116
29	Selection Constrains High Rates of Tandem Repetitive DNA Mutation in <i>Daphnia pulex</i> . Genetics, 2017, 207, 697-710.	2.9	29
30	Spontaneous Mutation Accumulation in <i>Daphnia pulex</i> in Selection-Free vs. Competitive Environments. Molecular Biology and Evolution, 2017, 34, 160-173.	8.9	67
31	An Individual-Based Modeling Approach to Investigate Sympatric Speciation via Specialized Resource Usage. Open Journal of Ecology, 2017, 07, 222-269.	1.0	3
32	Population attenuation in zooplankton communities during transoceanic transfer in ballast water. Ecology and Evolution, 2016, 6, 6170-6177.	1.9	11
33	The effects of parameter choice on defining molecular operational taxonomic units and resulting ecological analyses of metabarcoding data. Genome, 2016, 59, 981-990.	2.0	73
34	Early detection of aquatic invaders using metabarcoding reveals a high number of nonâ€indigenous species in <scp>C</scp> anadian ports. Diversity and Distributions, 2016, 22, 1045-1059.	4.1	82
35	Effect of shipping traffic on biofouling invasion success at population and community levels. Biological Invasions, 2016, 18, 3681-3695.	2.4	30
36	Metabarcoding reveals strong spatial structure and temporal turnover of zooplankton communities among marine and freshwater ports. Diversity and Distributions, 2016, 22, 493-504.	4.1	83

3

#	Article	IF	CITATIONS
37	Divergence thresholds and divergent biodiversity estimates: can metabarcoding reliably describe zooplankton communities?. Ecology and Evolution, 2015, 5, 2234-2251.	1.9	117
38	Toward accurate molecular identification of species in complex environmental samples: testing the performance of sequence filtering and clustering methods. Ecology and Evolution, 2015, 5, 2252-2266.	1.9	128
39	The contribution of Nicolae Botnariuc to evolutionary biology using systems theory. Genome, 2015, 58, iii-vi.	2.0	0
40	Genetic reconstructions of invasion history. Molecular Ecology, 2015, 24, 2212-2225.	3.9	190
41	Synergistic interactions of biotic and abiotic environmental stressors on gene expression. Genome, 2015, 58, 99-109.	2.0	17
42	Speciation without Pre-Defined Fitness Functions. PLoS ONE, 2015, 10, e0137838.	2.5	15
43	Reproducibility of pyrosequencing data for biodiversity assessment in complex communities. Methods in Ecology and Evolution, 2014, 5, 881-890.	5.2	40
44	From barcoding single individuals to metabarcoding biological communities: towards an integrative approach to the study of global biodiversity. Trends in Ecology and Evolution, 2014, 29, 566-571.	8.7	350
45	Morphological and genetic variability in an alien invasive mussel across an environmental gradient in South America. Limnology and Oceanography, 2014, 59, 400-412.	3.1	24
46	Gene Expression Variation in Duplicate Lactate dehydrogenase Genes: Do Ecological Species Show Distinct Responses?. PLoS ONE, 2014, 9, e103964.	2.5	4
47	Speciation patterns and processes in the zooplankton of the ancient lakes of <scp>S</scp> ulawesi <scp>I</scp> ndonesia. Ecology and Evolution, 2013, 3, 3083-3094.	1.9	11
48	High sensitivity of 454 pyrosequencing for detection of rare species in aquatic communities. Methods in Ecology and Evolution, 2013, 4, 558-565.	5.2	208
49	The role of hybridization in the origin and spread of asexuality in <i><scp>D</scp>aphnia</i> Molecular Ecology, 2013, 22, 4549-4561.	3.9	48
50	Genetic Diversity in Introduced Golden Mussel Populations Corresponds to Vector Activity. PLoS ONE, 2013, 8, e59328.	2.5	26
51	Invasion Pathway of the Ctenophore Mnemiopsis leidyi in the Mediterranean Sea. PLoS ONE, 2013, 8, e81067.	2.5	44
52	Speciation with gene flow in a heterogeneous virtual world: can physical obstacles accelerate speciation?. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 3055-3064.	2.6	23
53	Scaleâ€dependent postâ€establishment spread and genetic diversity in an invading mollusc in South America. Diversity and Distributions, 2012, 18, 1042-1055.	4.1	43
54	Complex genetic patterns in closely related colonizing invasive species. Ecology and Evolution, 2012, 2, 1331-1346.	1.9	50

#	Article	IF	CITATIONS
55	Multilocus genetic analyses differentiate between widespread and spatially restricted cryptic species in a model ascidian. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 2377-2385.	2.6	71
56	Speciation with gene flow and the genetics of habitat transitions. Molecular Ecology, 2012, 21, 1411-1422.	3.9	61
57	Disentangling invasion processes in a dynamic shipping–boating network. Molecular Ecology, 2012, 21, 4227-4241.	3.9	35
58	The Evolutionary History of Sarco(endo)plasmic Calcium ATPase (SERCA). PLoS ONE, 2012, 7, e52617.	2.5	44
59	An Integrated Multi-Disciplinary Approach for Studying Multiple Stressors in Freshwater Ecosystems: Daphnia as a Model Organism. Integrative and Comparative Biology, 2011, 51, 623-633.	2.0	142
60	Comparative phylogeography of two colonial ascidians reveals contrasting invasion histories in North America. Biological Invasions, 2011, 13, 635-650.	2.4	52
61	Multiple introductions and invasion pathways for the invasive ctenophore Mnemiopsis leidyi in Eurasia. Biological Invasions, 2011, 13, 679-690.	2.4	65
62	Use of DNA barcoding to detect invertebrate invasive species from diapausing eggs. Biological Invasions, 2011, 13, 1325-1340.	2.4	86
63	Evolutionary factors affecting Lactate dehydrogenase A and B variation in the Daphnia pulexspecies complex. BMC Evolutionary Biology, 2011, 11, 212.	3.2	20
64	High Rate of Large-Scale Hemizygous Deletions in Asexually Propagating Daphnia: Implications for the Evolution of Sex. Molecular Biology and Evolution, 2011, 28, 335-342.	8.9	33
65	The Ancient Lakes of Indonesia: Towards Integrated Research on Speciation. Integrative and Comparative Biology, 2011, 51, 634-643.	2.0	37
66	Pleistocene-driven diversification in freshwater zooplankton: Genetic patterns of refugial isolation and postglacial recolonization in Leptodora kindtii (Crustacea, Cladocera). Limnology and Oceanography, 2011, 56, 1725-1736.	3.1	32
67	Efficacy of  saltwater flushing' in protecting the Great Lakes from biological invasions by invertebrate eggs in ships' ballast sediment. Freshwater Biology, 2010, 55, 2414-2424.	2.4	38
68	Ancient lakes revisited: from the ecology to the genetics of speciation. Molecular Ecology, 2010, 19, 4837-4851.	3.9	79
69	Invasion genetics of the <i>Ciona intestinalis</i> species complex: from regional endemism to global homogeneity. Molecular Ecology, 2010, 19, 4678-4694.	3.9	140
70	Permanent Genetic Resources added to Molecular Ecology Resources Database 1 August 2009–30 September 2009. Molecular Ecology Resources, 2010, 10, 232-236.	4.8	71
71	Evolutionary History of d-Lactate Dehydrogenases: A Phylogenomic Perspective on Functional Diversity in the FAD Binding Oxidoreductase/Transferase Type 4 Family. Journal of Molecular Evolution, 2009, 69, 276-287.	1.8	19
72	D- and L-lactate dehydrogenases during invertebrate evolution. BMC Evolutionary Biology, 2008, 8, 268.	3.2	40

#	Article	IF	CITATIONS
73	A microsatellite-based genetic linkage map of the waterflea, Daphnia pulex: On the prospect of crustacean genomics. Genomics, 2006, 88, 415-430.	2.9	76
74	Probing the relationships of the branchiopod crustaceans. Molecular Phylogenetics and Evolution, 2006, 39, 491-502.	2.7	75
75	The "Crustacean Seas" — an evolutionary perspective on the Ponto–Caspian peracarids. Canadian Journal of Fisheries and Aquatic Sciences, 2005, 62, 505-517.	1.4	58
76	Phylogeography of Ponto-Caspian crustaceans: a benthic-planktonic comparison. Molecular Ecology, 2003, 12, 985-996.	3.9	63
77	Genetic perspectives on invasions: the case of the Cladocera. Canadian Journal of Fisheries and Aquatic Sciences, 2002, 59, 1229-1234.	1.4	61
78	Taxonomic resolution of the genus Bythotrephes Leydig using molecular markers and re-evaluation of its global distribution. Diversity and Distributions, 2002, 8, 67-84.	4.1	50
79	Distribution, Fecundity, and Genetics of Cercopagis pengoi (Ostroumov) (Crustacea, Cladocera) in Lake Ontario. Journal of Great Lakes Research, 2001, 27, 19-32.	1.9	52
80	An invasion history for Cercopagis pengoi based on mitochondrial gene sequences. Limnology and Oceanography, 2001, 46, 224-229.	3.1	115