
VÃ-tor E Santo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2803705/publications.pdf Version: 2024-02-01

VÃTOR E SANTO

#	Article	IF	CITATIONS
1	Establishment and characterization of a novel ovarian high-grade serous carcinoma cell line—IPO43. Cancer Cell International, 2022, 22, 175.	4.1	3
2	Patient-Derived Explants of Colorectal Cancer: Histopathological and Molecular Analysis of Long-Term Cultures. Cancers, 2021, 13, 4695.	3.7	6
3	Patient-derived ovarian cancer explants: preserved viability and histopathological features in long-term agitation-based cultures. Scientific Reports, 2020, 10, 19462.	3.3	19
4	Application of pulsed electric fields for the valorization of platelets with no therapeutic value for transfusion medicine. Technology, 2019, 07, 40-45.	1.4	3
5	PREDECT Protocols for Complex 2D/3D Cultures. Methods in Molecular Biology, 2019, 1888, 1-20.	0.9	3
6	Supercritical Fluid Technology as a Tool to Prepare Gradient Multifunctional Architectures Towards Regeneration of Osteochondral Injuries. Advances in Experimental Medicine and Biology, 2018, 1058, 265-278.	1.6	4
7	Drug screening in 3D in vitro tumor models: overcoming current pitfalls of efficacy readâ€outs. Biotechnology Journal, 2017, 12, 1600505.	3.5	77
8	The Volume of Three-Dimensional Cultures of Cancer Cells In Vitro Influences Transcriptional Profile Differences and Similarities with Monolayer Cultures and Xenografted Tumors. Neoplasia, 2017, 19, 695-706.	5.3	23
9	Protocols and characterization data for 2D, 3D, and slice-based tumor models from the PREDECT project. Scientific Data, 2017, 4, 170170.	5.3	27
10	Magnetically-Responsive Hydrogels for Modulation of Chondrogenic Commitment of Human Adipose-Derived Stem Cells. Polymers, 2016, 8, 28.	4.5	33
11	Capturing tumor complexity in vitro: Comparative analysis of 2D and 3D tumor models for drug discovery. Scientific Reports, 2016, 6, 28951.	3.3	192
12	Engineering Enriched Microenvironments with Gradients of Platelet Lysate in Hydrogel Fibers. Biomacromolecules, 2016, 17, 1985-1997.	5.4	18
13	Development of an Injectable Calcium Phosphate/Hyaluronic Acid Microparticles System for Platelet Lysate Sustained Delivery Aiming Bone Regeneration. Macromolecular Bioscience, 2016, 16, 1662-1677.	4.1	24
14	Assessment of bone healing ability of calcium phosphate cements loaded with platelet lysate in rat calvarial defects. Journal of Biomaterials Applications, 2016, 31, 637-649.	2.4	12
15	Adaptable stirred-tank culture strategies for large scale production of multicellular spheroid-based tumor cell models. Journal of Biotechnology, 2016, 221, 118-129.	3.8	92
16	Modelling the tumour microenvironment in long-term microencapsulated 3D co-cultures recapitulates phenotypic features of disease progression. Biomaterials, 2016, 78, 50-61.	11.4	99
17	Platelet lysate-based pro-angiogenic nanocoatings. Acta Biomaterialia, 2016, 32, 129-137.	8.3	27
18	Layer-by-layer assembled cell instructive nanocoatings containing platelet lysate. Biomaterials, 2015, 48, 56-65.	11.4	48

VÃTOR E SANTO

#	Article	IF	CITATIONS
19	Cell engineering by the internalization of bioinstructive micelles for enhanced bone regeneration. Nanomedicine, 2015, 10, 1707-1721.	3.3	17
20	Natural assembly of platelet lysate-loaded nanocarriers into enriched 3D hydrogels for cartilage regeneration. Acta Biomaterialia, 2015, 19, 56-65.	8.3	42
21	Temperature-responsive bioactive hydrogels based on a multifunctional recombinant elastin-like polymer. Biomaterials and Biomechanics in Bioengineering, 2015, 2, 47-59.	0.1	1
22	Abstract 321: In vitro recapitulation of 3D tumor microenvironment with defined oxygen and pH levels through a novel scalable bioreactor-based strategy. , 2015, , .		0
23	Platelet lysate membranes as new autologous templates for tissue engineering applications. Inflammation and Regeneration, 2014, 34, 033-044.	3.7	28
24	Functionalized Microparticles Producing Scaffolds in Combination with Cells. Advanced Functional Materials, 2014, 24, 1391-1400.	14.9	39
25	Evaluation of the <i>in vitro</i> and <i>in vivo</i> biocompatibility of carrageenan-based hydrogels. Journal of Biomedical Materials Research - Part A, 2014, 102, 4087-4097.	4.0	56
26	Contributions and future perspectives on the use of magnetic nanoparticles as diagnostic and therapeutic tools in the field of regenerative medicine. Expert Review of Molecular Diagnostics, 2013, 13, 553-566.	3.1	30
27	Controlled Release Strategies for Bone, Cartilage, and Osteochondral Engineering—Part I: Recapitulation of Native Tissue Healing and Variables for the Design of Delivery Systems. Tissue Engineering - Part B: Reviews, 2013, 19, 308-326.	4.8	131
28	Controlled Release Strategies for Bone, Cartilage, and Osteochondral Engineering—Part II: Challenges on the Evolution from Single to Multiple Bioactive Factor Delivery. Tissue Engineering - Part B: Reviews, 2013, 19, 327-352.	4.8	108
29	Unleashing the potential of supercritical fluids for polymer processing in tissue engineering and regenerative medicine. Journal of Supercritical Fluids, 2013, 79, 177-185.	3.2	48
30	From nano- to macro-scale: nanotechnology approaches for spatially controlled delivery of bioactive factors for bone and cartilage engineering. Nanomedicine, 2012, 7, 1045-1066.	3.3	57
31	Chitosan-chondroitin sulphate nanoparticles for controlled delivery of platelet lysates in bone regenerative medicine. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, s47-s59.	2.7	88
32	Enhancement of osteogenic differentiation of human adipose derived stem cells by the controlled release of platelet lysates from hybrid scaffolds produced by supercritical fluid foaming. Journal of Controlled Release, 2012, 162, 19-27.	9.9	78
33	Development of new chitosan/carrageenan nanoparticles for drug delivery applications. Journal of Biomedical Materials Research - Part A, 2010, 92A, 1265-1272.	4.0	150
34	Hybrid 3D structure of poly(d,l-lactic acid) loaded with chitosan/chondroitin sulfate nanoparticles to be used as carriers for biomacromolecules in tissue engineering. Journal of Supercritical Fluids, 2010, 54, 320-327.	3.2	64
35	Carrageenan-Based Hydrogels for the Controlled Delivery of PDGF-BB in Bone Tissue Engineering Applications. Biomacromolecules, 2009, 10, 1392-1401.	5.4	165