Qing-He Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2802597/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Olfactory recognition and behavioural avoidance of angiosperm nonhost volatiles by conifer-inhabiting bark beetles. Agricultural and Forest Entomology, 2004, 6, 1-20.	1.3	297
2	Volatiles from Nonhost Birch Trees Inhibit Pheromone Response in Spruce Bark Beetles. Die Naturwissenschaften, 1998, 85, 557-561.	1.6	104
3	Redundancy, synergism, and active inhibitory range of non-host volatiles in reducing pheromone attraction in European spruce bark beetle Ips typographus. Oikos, 2003, 101, 299-310.	2.7	97
4	Green Leaf Volatiles Interrupt Pheromone Response of Spruce Bark Beetle, Ips typographus. Journal of Chemical Ecology, 1999, 25, 2847-2861.	1.8	91
5	Title is missing!. Journal of Chemical Ecology, 1999, 25, 1923-1943.	1.8	88

6 Bark volatiles from nonhost angiosperm trees of spruce bark beetle, Ips typographus (L.) (Coleoptera:) Tj ETQq0 0 QrgBT /Ovgrlock 10 T

7	Evaluation of herbivore-induced plant volatiles for monitoring green lacewings in Washington apple orchards. Biological Control, 2011, 56, 98-105.	3.0	70
8	Strategies of a bark beetle, Pityogenes bidentatus , in an olfactory landscape. Die Naturwissenschaften, 2000, 87, 503-507.	1.6	68
9	Peripheral modulation of pheromone response by inhibitory host compound in a beetle. Journal of Experimental Biology, 2010, 213, 3332-3339.	1.7	68
10	Title is missing!. Integrated Pest Management Reviews, 2001, 6, 185-196.	0.1	61
11	Olfactory responses of Ips duplicatus from inner Mongolia, China to nonhost leaf and bark volatiles. Journal of Chemical Ecology, 2001, 27, 995-1009.	1.8	57
12	ELECTROPHYSIOLOGICAL AND BEHAVIOURAL RESPONSES OF <i>TOMICUS PINIPERDA</i> AND <i>TOMICUS MINOR</i> (COLEOPTERA: SCOLYTIDAE) TO NON-HOST LEAF AND BARK VOLATILES. Canadian Entomologist, 2000, 132, 965-981.	0.8	50
13	Essential oils and their compositions as spatial repellents for pestiferous social wasps. Pest Management Science, 2013, 69, 542-552.	3.4	44
14	Enantiospecific antennal response of bark beetles to spiroacetal (E)-conophthorin. Journal of Chemical Ecology, 2002, 28, 1839-1852.	1.8	40
15	Iridodial: a powerful attractant for the green lacewing, Chrysopa septempunctata (Neuroptera:) Tj ETQq1 1 0.784	4314 rgBT 1.6	Qyerlock
16	Title is missing!. Journal of Chemical Ecology, 2000, 26, 841-858.	1.8	38
17	Male-produced anti-sex pheromone in a plant bug. Die Naturwissenschaften, 2003, 90, 505-508.	1.6	37
18	Interruption of aggregation pheromone in Ips typographus (L.) (Col. Scolytidae) by non-host bark volatiles. Agricultural and Forest Entomology, 2003, 5, 145-153.	1.3	35

QING-HE ZHANG

#	Article	IF	CITATIONS
19	Semiochemistry of the Goldeneyed Lacewing Chrysopa oculata: Attraction of Males to a Male-Produced Pheromone. Journal of Chemical Ecology, 2004, 30, 1849-1870.	1.8	34
20	Sex Pheromone of the Plant Bug, Phytocoris calli Knight. Journal of Chemical Ecology, 2008, 34, 719-724.	1.8	34
21	Pheromones of milkweed bugs (Heteroptera: Lygaeidae) attract wayward plant bugs: Phytocoris mirid sex pheromone. Journal of Chemical Ecology, 2003, 29, 1835-1851.	1.8	32
22	Electrophysiological and Behavioral Responses of Ips subelongatus to Semiochemicals from Its Hosts, Non-hosts, and Conspecifics in China. Journal of Chemical Ecology, 2007, 33, 391-404.	1.8	32
23	Catching <i>Ips duplicatus</i> (Sahlberg) (Coleoptera: Scolytidae) with pheromoneâ€baited traps: optimal trap type, colour, height and distance to infestation. Pest Management Science, 2010, 66, 213-219.	3.4	32
24	Attraction of the tea aphid, <i><scp>T</scp>oxoptera aurantii</i> , to combinations of volatiles and colors related to tea plants. Entomologia Experimentalis Et Applicata, 2012, 144, 258-269.	1.4	32
25	Discovery and Development of Chemical Attractants Used to Trap Pestiferous Social Wasps (Hymenoptera: Vespidae). Journal of Chemical Ecology, 2016, 42, 655-665.	1.8	30
26	Female calling behaviour and male response to the sex pheromone in <i>Thaumetopoea pityocampa</i> (Den. & Schiff.) (Lep., Thaumetopoeidae). Journal of Applied Entomology, 1998, 122, 353-360.	1.8	29
27	Male-Produced Pheromone of the Green Lacewing, Chrysopa nigricornis. Journal of Chemical Ecology, 2006, 32, 2163-2176.	1.8	29
28	High recaptures and long sampling range of pheromone traps for fall web worm mothHyphantria cunea (Lepidoptera: Arctiidae) males. Journal of Chemical Ecology, 1996, 22, 1783-1796.	1.8	26
29	Chemical Ecology of Neuroptera. Annual Review of Entomology, 2016, 61, 197-218.	11.8	26
30	Identification and Expression Patterns of Anoplophora chinensis (Forster) Chemosensory Receptor Genes from the Antennal Transcriptome. Frontiers in Physiology, 2018, 9, 90.	2.8	25
31	Iridodials: enantiospecific synthesis and stereochemical assignment of the pheromone for the golden-eyed lacewing, Chrysopa oculata. Tetrahedron Letters, 2004, 45, 3339-3340.	1.4	24
32	Attraction of Scavenging Chloropid and Milichiid Flies (Diptera) to Metathoracic Scent Gland Compounds of Plant Bugs (Heteroptera: Miridae). Environmental Entomology, 2004, 33, 12-20.	1.4	21
33	A model for peak and width of signaling windows: Ips duplicatus and Chilo partellus pheromone component proportionsdoes response have a wider window than production?. Journal of Chemical Ecology, 2001, 27, 1481-1511.	1.8	20
34	Electrophysiological and Behavioral Responses of Ips duplicatus to Aggregation Pheromone in Inner Mongolia, China: Amitinol as a Potential Pheromone Component. Journal of Chemical Ecology, 2007, 33, 1303-1315.	1.8	19
35	GC-EAD responses to semiochemicals by eight beetles in the subcortical community associated with Monterey pine trees in coastal California: similarities and disparities across three trophic levels. Chemoecology, 2008, 18, 243-254.	1.1	18
36	Semiochemistry of Dendroctonus armandi Tsai and Li (Coleoptera: Curculionidae: Scolytinae): both female-produced aggregation pheromone and host tree kairomone are critically important. Chemoecology, 2015, 25, 135-145.	1.1	18

QING-HE ZHANG

#	Article	IF	CITATIONS
37	Antennal and Behavioral Responses of Lygus lineolaris (Palisot de Beauvois) (Heteroptera: Miridae) to Metathoracic Scent Gland Compounds. Journal of Entomological Science, 2007, 42, 92-104.	0.3	17
38	Genetic comparison of Ips duplicatus (Sahlberg, 1836) (Coleoptera: Curculionidae, Scolytinae) populations from Europe and Asia. Journal of Forest Research, 2007, 12, 345-349.	1.4	15
39	Functional investigation of monoterpenes for improved understanding of the relationship between hosts and bark beetles. Journal of Applied Entomology, 2021, 145, 303-311.	1.8	15
40	Diurnal and seasonal flight activity of males and population dynamics of fall webworm moth, <i>Hyphantria cunea</i> , (Drury) (Lep., Arctiidae) monitored by pheromone traps. Journal of Applied Entomology, 1998, 122, 523-532.	1.8	14
41	Prothoracic Gland Semiochemicals of Green Lacewings. Journal of Chemical Ecology, 2009, 35, 1181-1187.	1.8	14
42	Female Goldeneyed Lacewings (Neuroptera: Chrysopidae) Approach but Seldom Enter Traps Baited with the Male-Produced Compound Iridodial. Journal of Economic Entomology, 2007, 100, 1751-1755.	1.8	13
43	Aggregation Pheromone of the Qinghai Spruce Bark Beetle, Ips nitidus Eggers. Journal of Chemical Ecology, 2009, 35, 610-617.	1.8	13
44	Inhibition of Predator Attraction to Kairomones by Non-Host Plant Volatiles for Herbivores: A Bypass-Trophic Signal. PLoS ONE, 2010, 5, e11063.	2.5	13
45	Chemical Ecology of Bark Beetles in Regard to Search and Selection of Host Trees. , 2011, , 150-190.		11
46	Olfactory and visual responses of the longlegged chafer <i>Hoplia spectabilis</i> Medvedev (Coleoptera: Scarabaeidae) in Qinghai Province, China. Pest Management Science, 2011, 67, 162-169.	3.4	11
47	Population divergence of aggregation pheromone responses in <i>lps subelongatus</i> in northeastern China. Insect Science, 2016, 23, 728-738.	3.0	11
48	Field responses of the Asian larch bark beetle, Ips subelongatus, to potential aggregation pheromone components: disparity between two populations in northeastern China. Insect Science, 2011, 18, 311-319.	3.0	10
49	Pharmacophagy in green lacewings (Neuroptera: Chrysopidae: <i>Chrysopa</i> spp.)?. PeerJ, 2016, 4, e1564.	2.0	10
50	Chemical signal interactions of the bark beetle with fungal symbionts, and host/non-host trees. Journal of Experimental Botany, 2020, 71, 6084-6091.	4.8	10
51	Synergistic Chemical Attraction of the Eastern Yellowjacket, Vespula maculifrons (Hymenoptera:) Tj ETQq1 1 0.	784314 rg 0.3	gBT <mark>/</mark> Overlock
52	Identification and Expression Profile of Chemosensory Receptor Genes in Aromia bungii (Faldermann) Antennal Transcriptome. Insects, 2022, 13, 96.	2.2	8
53	Aggregation pheromone of a newly described spruce bark beetle, Ips shangrila Cognato and Sun, from China. Chemoecology, 2009, 19, 203-210.	1.1	7
54	Sex pheromone of the tea aphid, Toxoptera aurantii (Boyer de Fonscolombe) (Hemiptera: Aphididae). Chemoecology, 2014, 24, 179-187.	1.1	7

QING-HE ZHANG

#	Article	IF	CITATIONS
55	Serendipitous, cross familial discovery of the first long-range chemical attractants for antlions (Neuroptera: Myrmeleontidae): (1R,2S,5R,8R)-iridodial and Z,E-nepetalactol. Frontiers in Ecology and Evolution, 2015, 2, .	2.2	6
56	Reproductive Isolation of Ips nitidus and I. shangrila in Mountain Forests of Western China: Responses to Chiral and Achiral Candidate Pheromone Components. Journal of Chemical Ecology, 2015, 41, 678-688.	1.8	6
57	North American Invasion of the Tawny Crazy Ant (Nylanderia fulva) Is Enabled by Pheromonal Synergism from Two Separate Glands. Journal of Chemical Ecology, 2015, 41, 853-858.	1.8	6
58	Pheromoneâ€trapping the nun moth, <i>Lymantria monacha</i> (Lepidoptera: Lymantriidae) in Inner Mongolia, China. Insect Science, 2017, 24, 631-639.	3.0	6
59	Synergistic sex pheromone components of the greyâ€spotted tussock moth, <i>Orgyia ericae</i> . Entomologia Experimentalis Et Applicata, 2010, 136, 227-234.	1.4	3
60	Aggregation pheromone of the Oriental spruce engraver Pseudips orientalis. Agricultural and Forest Entomology, 2011, 13, 67-75.	1.3	3
61	2-methyl-3-buten-2-ol: A Pheromone Component of Conifer Bark Beetles Found in the Bark of Nonhost Deciduous Trees. Psyche: Journal of Entomology, 2012, 2012, 1-7.	0.9	2
62	Synergistic attraction of kleptoparasitic flies, Desmometopa spp. (Diptera: Milichiidae) to two vespid venom volatiles, trans-conophthorin and N-(3-methylbutyl)acetamide. Chemoecology, 2022, 32, 89-94.	1.1	1