Jonathan D Powell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2801903/publications.pdf

Version: 2024-02-01

119 papers 14,522 citations

54 h-index 24258 110 g-index

124 all docs

124 docs citations

times ranked

124

19267 citing authors

#	Article	IF	CITATIONS
1	Signatures of GVHD and relapse after posttransplant cyclophosphamide revealed by immune profiling and machine learning. Blood, 2022, 139, 608-623.	1.4	42
2	Sulforaphane exhibits antiviral activity against pandemic SARS-CoV-2 and seasonal HCoV-OC43 coronaviruses in vitro and in mice. Communications Biology, 2022, 5, 242.	4.4	42
3	Persistent CAD activity in memory CD8 ⁺ T cells supports rRNA synthesis and ribosomal biogenesis required at rechallenge. Science Immunology, 2022, 7, .	11.9	7
4	Interrogation of T Cell–enriched Tumors Reveals Prognostic and Immunotherapeutic Implications of Polyamine Metabolism. Cancer Research Communications, 2022, 2, 639-652.	1.7	2
5	Inhibition of the Adenosine Pathway to Potentiate Cancer Immunotherapy: Potential for Combinatorial Approaches. Annual Review of Medicine, 2021, 72, 331-348.	12.2	37
6	Metabolic programs define dysfunctional immune responses in severe COVID-19 patients. Cell Reports, 2021, 34, 108863.	6.4	92
7	Fueling the Revolution: Targeting Metabolism to Enhance Immunotherapy. Cancer Immunology Research, 2021, 9, 255-260.	3.4	16
8	Functional characterization of CD4+ T cell receptors crossreactive for SARS-CoV-2 and endemic coronaviruses. Journal of Clinical Investigation, 2021, 131, .	8.2	72
9	mTORC1 Signaling Regulates Proinflammatory Macrophage Function and Metabolism. Journal of Immunology, 2021, 207, 913-922.	0.8	27
10	An engineered IL-2 partial agonist promotes CD8+ T cell stemness. Nature, 2021, 597, 544-548.	27.8	94
11	Immune dysregulation as a driver of idiopathic pulmonary fibrosis. Journal of Clinical Investigation, 2021, 131, .	8.2	114
12	Rethinking the adenosine-A2AR checkpoint: implications for enhancing anti-tumor immunotherapy. Current Opinion in Pharmacology, 2020, 53, 77-83.	3.5	7
13	A phase II randomized trial of RAdium-223 dichloride and SABR Versus SABR for oligomEtastatic prostate caNcerS (RAVENS). BMC Cancer, 2020, 20, 492.	2.6	16
14	Manipulation of Metabolic Pathways and Its Consequences for Anti-Tumor Immunity: A Clinical Perspective. International Journal of Molecular Sciences, 2020, 21, 4030.	4.1	7
15	Metabolism of immune cells in cancer. Nature Reviews Cancer, 2020, 20, 516-531.	28.4	407
16	Targeting Metabolism as a Platform for Inducing Allograft Tolerance in the Absence of Long-Term Immunosuppression. Frontiers in Immunology, 2020, 11, 572.	4.8	5
17	Targeting glutamine metabolism enhances tumor-specific immunity by modulating suppressive myeloid cells. Journal of Clinical Investigation, 2020, 130, 3865-3884.	8.2	230
18	An exploratory study of metformin with or without rapamycin as maintenance therapy after induction chemotherapy in patients with metastatic pancreatic adenocarcinoma. Oncotarget, 2020, 11, 1929-1941.	1.8	7

#	Article	lF	Citations
19	A phase II randomized trial of RAdium-223 dichloride and SABR versus SABR for oligomEtastatic prostate caNcerS (RAVENS) Journal of Clinical Oncology, 2020, 38, TPS5586-TPS5586.	1.6	1
20	Targeting metabolism to regulate immune responses in autoimmunity and cancer. Nature Reviews Drug Discovery, 2019, 18, 669-688.	46.4	176
21	Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science, 2019, 366, 1013-1021.	12.6	643
22	PKG1-modified TSC2 regulates mTORC1 activity to counter adverse cardiac stress. Nature, 2019, 566, 264-269.	27.8	98
23	Inhibition of glutamine metabolism accelerates resolution of acute lung injury. Physiological Reports, 2019, 7, e14019.	1.7	12
24	A phase II study of temsirolimus and liposomal doxorubicin for patients with recurrent and refractory bone and soft tissue sarcomas. Clinical Sarcoma Research, 2018, 8, 21.	2.3	22
25	MRI demonstrates glutamine antagonist-mediated reversal of cerebral malaria pathology in mice. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E12024-E12033.	7.1	26
26	Peeking under the Hood of Naive T Cells. Cell Metabolism, 2018, 28, 801-802.	16.2	4
27	Acid Suspends the Circadian Clock in Hypoxia through Inhibition of mTOR. Cell, 2018, 174, 72-87.e32.	28.9	172
28	mTOR Complex 1 Signaling Regulates the Generation and Function of Central and Effector Foxp3+ Regulatory T Cells. Journal of Immunology, 2018, 201, 481-492.	0.8	100
29	Inhibition of the adenosine A2a receptor modulates expression of T cell coinhibitory receptors and improves effector function for enhanced checkpoint blockade and ACT in murine cancer models. Cancer Immunology, Immunotherapy, 2018, 67, 1271-1284.	4.2	131
30	Targeting Metabolism as a Novel Therapeutic Approach to Autoimmunity, Inflammation, and Transplantation. Journal of Immunology, 2017, 198, 999-1005.	0.8	82
31	The EGR2 targets LAG-3 and 4-1BB describe and regulate dysfunctional antigen-specific CD8+ T cells in the tumor microenvironment. Journal of Experimental Medicine, 2017, 214, 381-400.	8.5	154
32	mTORC1 Promotes T-bet Phosphorylation To Regulate Th1 Differentiation. Journal of Immunology, 2017, 198, 3939-3948.	0.8	39
33	Targeting T cell metabolism to regulate T cell activation, differentiation and function in disease. Current Opinion in Immunology, 2017, 46, 82-88.	5.5	88
34	mTORC2 Signaling Selectively Regulates the Generation and Function of Tissue-Resident Peritoneal Macrophages. Cell Reports, 2017, 20, 2439-2454.	6.4	45
35	Murine Full-thickness Skin Transplantation. Journal of Visualized Experiments, 2017, , .	0.3	21
36	Cyclophosphamide improves engraftment in patients with SCD and severe organ damage who undergo haploidentical PBSCT. Blood Advances, 2017, 1, 652-661.	5.2	84

#	Article	IF	CITATIONS
37	Cellular Metabolism Controls Lymphocyte Activation and Differentiation. , 2016, , 38-43.		O
38	Deletion of mTORC1 Activity in CD4+ T Cells Is Associated with Lung Fibrosis and Increased $\hat{l}^3\hat{l}'$ T Cells. PLoS ONE, 2016, 11, e0163288.	2.5	5
39	Hunger Pains: Stimulating the Appetite of the Immune System for Cancer. Cancer Cell, 2016, 30, 13-15.	16.8	8
40	Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells. Science, 2016, 352, 366-370.	12.6	464
41	Asymmetric inheritance of mTORC1 kinase activity during division dictates CD8+ T cell differentiation. Nature Immunology, 2016, 17, 704-711.	14.5	199
42	Discovery of 6-Diazo-5-oxo- <scp> < scp>-norleucine (DON) Prodrugs with Enhanced CSF Delivery in Monkeys: A Potential Treatment for Glioblastoma. Journal of Medicinal Chemistry, 2016, 59, 8621-8633.</scp>	6.4	98
43	De novo DNA methylation by DNA methyltransferase 3a controls early effector CD8 ⁺ T-cell fate decisions following activation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10631-10636.	7.1	107
44	Leucine Metabolism in T Cell Activation: mTOR Signaling and Beyond. Advances in Nutrition, 2016, 7, 798S-805S.	6.4	99
45	An Fc–Small Molecule Conjugate for Targeted Inhibition of the Adenosineâ€2A Receptor. ChemBioChem, 2016, 17, 1951-1960.	2.6	1
46	Warburg meets epigenetics. Science, 2016, 354, 419-420.	12.6	10
47	Vaccinia vaccine–based immunotherapy arrests and reverses established pulmonary fibrosis. JCI Insight, 2016, 1, e83116.	5.0	22
48	Abstract 2337: The adenosine A2A receptor antagonist CPI-444 blocks adenosine-mediated T-cell suppression and exhibits antitumor activity alone and in combination with anti-PD-1 and anti-PD-L1. Cancer Research, 2016, 76, 2337-2337.	0.9	2
49	Rapamycin Inhibits Human Laryngotracheal Stenosis–derived Fibroblast Proliferation, Metabolism, and Function in Vitro. Otolaryngology - Head and Neck Surgery, 2015, 152, 881-888.	1.9	37
50	Cellular Size as a Means of Tracking mTOR Activity and Cell Fate of CD4+ T Cells upon Antigen Recognition. PLoS ONE, 2015, 10, e0121710.	2.5	39
51	Adoptive transfer of activated marrow-infiltrating lymphocytes induces measurable antitumor immunity in the bone marrow in multiple myeloma. Science Translational Medicine, 2015, 7, 288ra78.	12.4	104
52	The PTEN pathway in T _{regs} is a critical driver of the suppressive tumor microenvironment. Science Advances, 2015, 1, e1500845.	10.3	167
53	Feeding an army: The metabolism of T cells in activation, anergy, and exhaustion. Molecular Immunology, 2015, 68, 492-496.	2.2	65
54	Sugar, fat, and protein: new insights into what T cells crave. Current Opinion in Immunology, 2015, 33, 49-54.	5.5	19

#	Article	IF	CITATIONS
55	Dysregulated Macrophages Are Present in Bleomycinâ€Induced Murine Laryngotracheal Stenosis. Otolaryngology - Head and Neck Surgery, 2015, 153, 244-250.	1.9	35
56	A2aR antagonists: Next generation checkpoint blockade for cancer immunotherapy. Computational and Structural Biotechnology Journal, 2015, 13, 265-272.	4.1	188
57	Something in the Air: Hyperoxic Conditioning of the Tumor Microenvironment for Enhanced Immunotherapy. Cancer Cell, 2015, 27, 435-436.	16.8	32
58	Preventing Allograft Rejection by Targeting Immune Metabolism. Cell Reports, 2015, 13, 760-770.	6.4	156
59	Targeting glutamine metabolism rescues mice from late-stage cerebral malaria. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13075-13080.	7.1	66
60	Regulation of T cells by mTOR: the known knowns and the known unknowns. Trends in Immunology, 2015, 36, 13-20.	6.8	163
61	Mammalian Target of Rapamycin Complex 2 Regulates Invariant NKT Cell Development and Function Independent of Promyelocytic Leukemia Zinc-Finger. Journal of Immunology, 2015, 194, 223-230.	0.8	46
62	mTORC1 and mTORC2 selectively regulate CD8+ T cell differentiation. Journal of Clinical Investigation, 2015, 125, 2090-2108.	8.2	329
63	A phase II study of temsirolimus and liposomal doxorubicin for patients with recurrent and refractory bone and soft tissue sarcomas Journal of Clinical Oncology, 2015, 33, 10560-10560.	1.6	1
64	Egr3 Induces a Th17 Response by Promoting the Development of γδT Cells. PLoS ONE, 2014, 9, e87265.	2.5	13
65	Insight into the role of mTOR and metabolism in T cells reveals new potential approaches to preventing graft rejection. Current Opinion in Organ Transplantation, 2014, 19, 363-371.	1.6	26
66	The AGC kinase SGK1 regulates TH1 and TH2 differentiation downstream of the mTORC2 complex. Nature Immunology, 2014, 15, 457-464.	14.5	163
67	Cytosolic Branched Chain Aminotransferase (BCATc) Regulates mTORC1 Signaling and Glycolytic Metabolism in CD4+ T Cells. Journal of Biological Chemistry, 2014, 289, 18793-18804.	3.4	73
68	Integrating canonical and metabolic signalling programmes in the regulation of T cell responses. Nature Reviews Immunology, 2014, 14, 435-446.	22.7	323
69	Single-agent GVHD prophylaxis with posttransplantation cyclophosphamide after myeloablative, HLA-matched BMT for AML, ALL, and MDS. Blood, 2014, 124, 3817-3827.	1.4	165
70	Slc7a5 helps T cells get with the program. Nature Immunology, 2013, 14, 422-424.	14.5	5
71	Macrophage A2A Adenosinergic Receptor Modulates Oxygen-Induced Augmentation of Murine Lung Injury. American Journal of Respiratory Cell and Molecular Biology, 2013, 48, 635-646.	2.9	24
72	Natural and inducible TH17 cells are regulated differently by Akt and mTOR pathways. Nature Immunology, 2013, 14, 611-618.	14.5	72

#	Article	IF	Citations
73	A Modified Model of T-Cell Differentiation Based on mTOR Activity and Metabolism. Cold Spring Harbor Symposia on Quantitative Biology, 2013, 78, 125-130.	1.1	20
74	<scp>mTOR</scp> , metabolism, and the regulation of Tâ€eell differentiation and function. Immunological Reviews, 2012, 249, 43-58.	6.0	335
75	Fueling Memories. Immunity, 2012, 36, 3-5.	14.3	10
76	Sensing the immune microenvironment to coordinate T cell metabolism, differentiation & Seminars in Immunology, 2012, 24, 414-420.	5.6	17
77	Regulation of Immune Responses by mTOR. Annual Review of Immunology, 2012, 30, 39-68.	21.8	689
78	Mammalian Target of Rapamycin Integrates Diverse Inputs To Guide the Outcome of Antigen Recognition in T Cells. Journal of Immunology, 2012, 188, 4721-4729.	0.8	59
79	Enhancement of tumor immunotherapy by deletion of the A2A adenosine receptor. Cancer Immunology, Immunotherapy, 2012, 61, 917-926.	4.2	134
80	Targeted immunosuppression: No longer naÃ⁻ve. Clinical Immunology, 2012, 142, 95-96.	3.2	0
81	Regulation of CD4+ and CD8+ Effector Responses by Sprouty-1. PLoS ONE, 2012, 7, e49801.	2.5	16
82	The cytosolic branchedâ€chain aminotransferase (BCATc) regulates T cell activation via mTOR signaling pathway. FASEB Journal, 2012, 26, 127.6.	0.5	0
83	Akt and mTOR Pathways Differentially Regulate the Development of Natural and Inducible IL-17-Producing CD4+ T Cells. Blood, 2012, 120, 838-838.	1.4	0
84	The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nature Immunology, 2011, 12, 295-303.	14.5	970
85	A Central Role for mTOR Kinase in Homeostatic Proliferation Induced CD8+ T Cell Memory and Tumor Immunity. Immunity, 2011, 34, 541-553.	14.3	142
86	Hyaluronan Fragments Promote Inflammation by Down-Regulating the Anti-inflammatory A2a Receptor. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 675-683.	2.9	50
87	Estrogen-related receptor-α is a metabolic regulator of effector T-cell activation and differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18348-18353.	7.1	200
88	Leucine metabolism as a novel approach to improve T cell performance in managing cancer. FASEB Journal, 2011, 25, 915.2.	0.5	0
89	Phase I/II Study of Marrow Infiltrating Lymphocytes (MILs) Generates Measurable Myeloma-Specific Immunity in the Autologous Stem Cell Transplant (SCT) Setting. Blood, 2011, 118, 997-997.	1.4	1
90	Genetic and biochemical regulation of CD4 T cell effector differentiation: insights from examination of T cell clonal anergy. Immunologic Research, 2010, 47, 162-171.	2.9	5

#	Article	IF	Citations
91	The Receptor SIGIRR Suppresses Th17 Cell Proliferation via Inhibition of the Interleukin-1 Receptor Pathway and mTOR Kinase Activation. Immunity, 2010, 32, 54-66.	14.3	171
92	The Mammalian Target of Rapamycin: Linking T Cell Differentiation, Function, and Metabolism. Immunity, 2010, 33, 301-311.	14.3	429
93	Allogeneic Hematopoietic Stem-Cell Transplantation for Sickle Cell Disease. New England Journal of Medicine, 2009, 361, 2309-2317.	27.0	381
94	Anergic T Cells Are Metabolically Anergic. Journal of Immunology, 2009, 183, 6095-6101.	0.8	243
95	The Adenosine A2a Receptor Inhibits Matrix-Induced Inflammation in a Novel Fashion. American Journal of Respiratory Cell and Molecular Biology, 2009, 40, 251-259.	2.9	49
96	Identification of DNA Methyltransferase 3a as a T Cell Receptor-Induced Regulator of Th1 and Th2 Differentiation. Journal of Immunology, 2009, 183, 2267-2276.	0.8	93
97	The mTOR Kinase Differentially Regulates Effector and Regulatory T Cell Lineage Commitment. Immunity, 2009, 30, 832-844.	14.3	1,079
98	mTOR: taking cues from the immune microenvironment. Immunology, 2009, 127, 459-465.	4.4	100
99	Enhanced interaction between Hsp90 and raptor regulates mTOR signaling upon T cell activation. Molecular Immunology, 2009, 46, 2694-2698.	2.2	30
100	Opposing regulation of T cell function by Egrâ€1/NAB2 and Egrâ€2/Egrâ€3. European Journal of Immunology, 2008, 38, 528-536.	2.9	96
101	A2A receptor signaling promotes peripheral tolerance by inducing T-cell anergy and the generation of adaptive regulatory T cells. Blood, 2008, 111, 251-259.	1.4	431
102	A Role for Mammalian Target of Rapamycin in Regulating T Cell Activation versus Anergy. Journal of Immunology, 2007, 178, 2163-2170.	0.8	252
103	Adenosine and anergy. Autoimmunity, 2007, 40, 425-432.	2.6	25
104	Bringing IL-2 down to earth. Blood, 2007, 109, 2671-2672.	1.4	0
105	The induction and maintenance of T cell anergy. Clinical Immunology, 2006, 120, 239-246.	3.2	51
106	Cutting Edge: TCR-Induced NAB2 Enhances T Cell Function by Coactivating IL-2 Transcription. Journal of Immunology, 2006, 177, 8301-8305.	0.8	55
107	A Novel Allogeneic Transplant Conditioning Regimen Designed for Tolerance Induction in Patients with Severe Sickle Cell Disease Blood, 2006, 108, 2994-2994.	1.4	0
108	Dissecting the mechanism of T-cell anergy with immunophilin ligands. Current Opinion in Investigational Drugs, 2006, 7, 1002-7.	2.3	20

#	Article	IF	CITATIONS
109	Low-Dose Radiation Plus Rapamycin Promotes Long-Term Bone Marrow Chimerism. Transplantation, 2005, 80, 1541-1545.	1.0	33
110	Threat Matrix: Low-Molecular-Weight Hyaluronan (HA) as a Danger Signal. Immunologic Research, 2005, 31, 207-218.	2.9	112
111	Egr-2 and Egr-3 are negative regulators of T cell activation. Nature Immunology, 2005, 6, 472-480.	14.5	382
112	A Novel Allogeneic Transplant Conditioning Regimen Designed for Tolerance Induction in Patients with Severe Sickle Cell Disease Blood, 2005, 106, 5429-5429.	1.4	0
113	The Novel Cyclophilin Binding Compound, Sanglifehrin A, Disassociates G1 Cell Cycle Arrest from Tolerance Induction. Journal of Immunology, 2004, 172, 4797-4803.	0.8	46
114	Non-parametric, hypothesis-based analysis of microarrays for comparison of several phenotypes. Bioinformatics, 2004, 20, 364-373.	4.1	21
115	Identification of the Molecular Mechanism by which TLR Ligation and IFN- \hat{I}^3 Synergize to Induce Mig. Clinical and Developmental Immunology, 2004, 11 , 77-85.	3.3	13
116	Role of LAG-3 in Regulatory T Cells. Immunity, 2004, 21, 503-513.	14.3	1,040
117	NF-κB Activation Mediates the Cross-talk between Extracellular Matrix and Interferon-γ (IFN-γ) Leading to Enhanced Monokine Induced by IFN-γ (MIG) Expression in Macrophages. Journal of Biological Chemistry, 2002, 277, 43757-43762.	3.4	43
118	Distinct Requirements for C-C Chemokine and IL-2 Production by Naive, Previously Activated, and Anergic T Cells. Journal of Immunology, 2000, 164, 3996-4002.	0.8	18
119	Molecular regulation of interleukinâ€2 expression by CD28 coâ€stimulation and anergy. Immunological Reviews, 1998, 165, 287-300.	6.0	176