Reine L Wallenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2801794/publications.pdf

Version: 2024-02-01

197 papers 14,271 citations

23567 58 h-index 20961 115 g-index

198 all docs 198
docs citations

198 times ranked 11811 citing authors

#	Article	IF	CITATIONS
1	Enabling <i>In Situ</i> Studies of Metal-Organic Chemical Vapor Deposition in a Transmission Electron Microscope. Microscopy and Microanalysis, 2022, 28, 1484-1492.	0.4	11
2	Realization of axially defined GaInP/InP/InAsP triple-junction photovoltaic nanowires for high-performance solar cells. Materials Today Energy, 2022, 27, 101050.	4.7	11
3	Compositional analysis of oxide-embedded III–V nanostructures. Nanotechnology, 2022, 33, 375705.	2.6	O
4	Selective oxidation of benzyl alcohols with molecular oxygen as the oxidant using Ag-Cu catalysts supported on polyoxometalates. Results in Chemistry, 2021, 3, 100150.	2.0	10
5	Compositional Correlation between the Nanoparticle and the Growing Au-Assisted In _{<i>x</i>} Ga _{1â€"<i>x</i>} As Nanowire. Journal of Physical Chemistry Letters, 2021, 12, 7590-7595.	4.6	12
6	Aerotaxy: gas-phase epitaxy of quasi 1D nanostructures. Nanotechnology, 2021, 32, 025605.	2.6	11
7	Adsorption of cadmium by a high-capacity adsorbent composed of silicate-titanate nanotubes embedded in hydrogel chitosan beads. Environmental Technology (United Kingdom), 2020, 41, 3043-3054.	2.2	16
8	Compressively-strained GaSb nanowires with core-shell heterostructures. Nano Research, 2020, 13, 2517-2524.	10.4	13
9	Dislocationâ€Free and Atomically Flat GaN Hexagonal Microprisms for Device Applications. Small, 2020, 16, 1907364.	10.0	10
10	Realization of Ultrahigh Quality InGaN Platelets to be Used as Relaxed Templates for Red Micro-LEDs. ACS Applied Materials & Samp; Interfaces, 2020, 12, 17845-17851.	8.0	24
11	High-Performance Vertical III-V Nanowire MOSFETs on Si With g _m > 3 mS/νm. IEEE Electron Device Letters, 2020, 41, 1161-1164.	3.9	22
12	In situ metal-organic chemical vapour deposition growth of Ill–V semiconductor nanowires in the Lund environmental transmission electron microscope. Semiconductor Science and Technology, 2020, 35, 034004.	2.0	20
13	Electron channelling: challenges and opportunities for compositional analysis of nanowires by TEM. Nanotechnology, 2020, 31, 364005.	2.6	6
14	Directed Câ^'H Halogenation Reactions Catalysed by Pd ^{II} Supported on Polymers under Batch and Continuous Flow Conditions. Chemistry - A European Journal, 2019, 25, 13591-13597.	3.3	14
15	In situ analysis of catalyst composition during gold catalyzed GaAs nanowire growth. Nature Communications, 2019, 10, 4577.	12.8	49
16	Kinetics of Au–Ga Droplet Mediated Decomposition of GaAs Nanowires. Nano Letters, 2019, 19, 3498-3504.	9.1	18
17	In situ XAS study of the local structure and oxidation state evolution of palladium in a reduced graphene oxide supported Pd(ii) carbene complex during an undirected $\hat{\text{Ca}}\in \text{``H acetoxylation reaction.}$ Catalysis Science and Technology, 2019, 9, 2025-2031.	4.1	20
18	InGaN Platelets: Synthesis and Applications toward Green and Red Light-Emitting Diodes. Nano Letters, 2019, 19, 2832-2839.	9.1	34

#	Article	IF	CITATIONS
19	<i>n</i> -type doping and morphology of GaAs nanowires in Aerotaxy. Nanotechnology, 2018, 29, 285601.	2.6	15
20	High In-content InGaN nano-pyramids: Tuning crystal homogeneity by optimized nucleation of GaN seeds. Journal of Applied Physics, 2018, 123, .	2.5	25
21	Self-Seeded Axio-Radial InAs–InAs _{1–<i>x</i>} P _{<i>x</i>} Nanowire Heterostructures beyond "Common―VLS Growth. Nano Letters, 2018, 18, 144-151.	9.1	15
22	Self-assembled InN quantum dots on side facets of GaN nanowires. Journal of Applied Physics, 2018, 123,	2.5	14
23	A Pd ^{II} Carbene Complex with Anthracene Sideâ€Arms for Ï€â€5tacking on Reduced Graphene Oxide (rGO): Activity towards Undirected C–H Oxygenation of Arenes. European Journal of Inorganic Chemistry, 2018, 2018, 4742-4746.	2.0	17
24	Electron Tomography Reveals the Droplet Covered Surface Structure of Nanowires Grown by Aerotaxy. Small, 2018, 14, e1801285.	10.0	5
25	Kinetic Engineering of Wurtzite and Zinc-Blende AlSb Shells on InAs Nanowires. Nano Letters, 2018, 18, 5775-5781.	9.1	6
26	Polymerâ€Supported Palladium(II) Carbene Complexes: Catalytic Activity, Recyclability, and Selectivity in Câ^'H Acetoxylation of Arenes. Chemistry - A European Journal, 2017, 23, 8457-8465.	3.3	25
27	Effect of hydrophobically modified graphene oxide on the properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Polymer, 2017, 108, 66-77.	3.8	16
28	Individual Defects in InAs/InGaAsSb/GaSb Nanowire Tunnel Field-Effect Transistors Operating below 60 mV/decade. Nano Letters, 2017, 17, 4373-4380.	9.1	85
29	Real-time in-situ Investigation of III-V Nanowire Growth using Custom-designed Hybrid Chemical Vapor Deposition-TEM. Microscopy and Microanalysis, 2017, 23, 1716-1717.	0.4	1
30	Vertical InAs/InGaAs Heterostructure Metal–Oxide–Semiconductor Field-Effect Transistors on Si. Nano Letters, 2017, 17, 6006-6010.	9.1	37
31	GaAsP Nanowires Grown by Aerotaxy. Nano Letters, 2016, 16, 5701-5707.	9.1	36
32	Measurements of structures and concentrations of carbon particle species in premixed flames by the use of in-situ wide angle X-ray scattering. Carbon, 2016, 96, 782-798.	10.3	8
33	Electron microscopy imaging of proteins on gallium phosphide semiconductor nanowires. Nanoscale, 2016, 8, 3936-3943.	5.6	9
34	Phase Transformation in Radially Merged Wurtzite GaAs Nanowires. Crystal Growth and Design, 2015, 15, 4795-4803.	3.0	27
35	Growth parameter design for homogeneous material composition in ternary Ga _{<i>x</i>} In _{1â^3<i>x</i>} P nanowires. Nanotechnology, 2015, 26, 435601.	2.6	19
36	Zn-doping of GaAs nanowires grown by Aerotaxy. Journal of Crystal Growth, 2015, 414, 181-186.	1.5	28

3

#	Article	IF	CITATIONS
37	Sonogashira coupling reaction over supported gold nanoparticles: Influence of support and catalyst synthesis route. Applied Catalysis A: General, 2015, 503, 69-76.	4.3	18
38	Iron sensitizer converts light to electrons with 92% yield. Nature Chemistry, 2015, 7, 883-889.	13.6	193
39	FIB Plan and Side View Cross-Sectional TEM Sample Preparation of Nanostructures. Microscopy and Microanalysis, 2014, 20, 133-140.	0.4	23
40	<i>In situ</i> etching for control over axial and radial III-V nanowire growth rates using HBr. Nanotechnology, 2014, 25, 505601.	2.6	10
41	Chemical solution deposition of thin films for protonic ceramic fuel cells. Solid State Ionics, 2014, 262, 852-855.	2.7	7
42	Epoxidation of olefins with molecular oxygen as the oxidant using gold catalysts supported on polyoxometalates. Green Chemistry, 2014, 16, 1586.	9.0	42
43	Straight and kinked InAs nanowire growth observed in situ by transmission electron microscopy. Nano Research, 2014, 7, 1188-1194.	10.4	19
44	Growth and characterization of wurtzite GaP nanowires with control over axial and radial growth by use of HCl in-situ etching. Journal of Crystal Growth, 2014, 386, 47-51.	1.5	32
45	InN quantum dots on GaN nanowires grown by MOVPE. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 421-424.	0.8	4
46	Semiconductor-Oxide Heterostructured Nanowires Using Postgrowth Oxidation. Nano Letters, 2013, 13, 5961-5966.	9.1	8
47	Performance of ZrO 2 -supported Nb- and W-oxide in the gas-phase dehydration of glycerol to acrolein. Journal of Catalysis, 2013, 297, 93-109.	6.2	99
48	Synthesis by spark plasma sintering of a novel protonic/electronic conductor composite: BaCe0.2Zr0.7Y0.1O3â^î^Î/Sr0.95Ti0.9Nb0.1O3â^Î^(BCZY27/STN95). Journal of Materials Science, 2013, 48, 6177-6185.	3.7	25
49	Multiple exciton generation in nano-crystals revisited: Consistent calculation of the yield based on pump-probe spectroscopy. Scientific Reports, 2013, 3, 2287.	3.3	34
50	Single GalnP nanowire p-i-n junctions near the direct to indirect bandgap crossover point. Applied Physics Letters, 2012, 100, 251103.	3.3	13
51	Continuous gas-phase synthesis of nanowires with tunable properties. Nature, 2012, 492, 90-94.	27.8	156
52	Electron Trapping in InP Nanowire FETs with Stacking Faults. Nano Letters, 2012, 12, 151-155.	9.1	102
53	High-Resolution Fluorescence Diffuse Optical Tomography Developed with Nonlinear Upconverting Nanoparticles. ACS Nano, 2012, 6, 4788-4795.	14.6	127
54	LaCoO3: Promising cathode material for protonic ceramic fuel cells based on a BaCe0.2Zr0.7Y0.1O3â^'Î^ electrolyte. Journal of Power Sources, 2012, 218, 313-319.	7.8	65

#	Article	IF	CITATIONS
55	High-Frequency Performance of Self-Aligned Gate-Last Surface Channel \$hbox{In}_{0.53}hbox{Ga}_{0.47}hbox{As}\$ MOSFET. IEEE Electron Device Letters, 2012, 33, 369-371.	3.9	58
56	Vertical "III–V―V-Shaped Nanomembranes Epitaxially Grown on a Patterned Si[001] Substrate and Their Enhanced Light Scattering. ACS Nano, 2012, 6, 10982-10991.	14.6	41
57	Formation of Bone-like Nanocrystalline Apatite Using Self-Assembled Liquid Crystals. Chemistry of Materials, 2012, 24, 892-902.	6.7	26
58	Electron Microscopy Study of Single Crystal BaZr0.9Y0.1O3-x Films Prepared by Chemical Solution Deposition. ECS Transactions, 2012, 45, 121-127.	0.5	6
59	Electron Transfer in Quantum-Dot-Sensitized ZnO Nanowires: Ultrafast Time-Resolved Absorption and Terahertz Study. Journal of the American Chemical Society, 2012, 134, 12110-12117.	13.7	113
60	Chemical mapping of DNA and counter-ion content inside phage by energy-filtered TEM. Journal of Biological Physics, 2012, 38, 229-240.	1.5	6
61	Probing the Wurtzite Conduction Band Structure Using State Filling in Highly Doped InP Nanowires. Nano Letters, 2011, 11, 2286-2290.	9.1	66
62	Electron Image Series Reconstruction of Twin Interfaces in InP Superlattice Nanowires. Microscopy and Microanalysis, 2011, 17, 752-758.	0.4	4
63	Growth of Straight InAs-on-GaAs Nanowire Heterostructures. Nano Letters, 2011, 11, 3899-3905.	9.1	44
64	Valence band splitting in wurtzite InP nanowires observed by photoluminescence and photoluminescence excitation spectroscopy. Nano Research, 2011, 4, 159-163.	10.4	41
65	Epitaxial InP nanowire growth from Cu seed particles. Journal of Crystal Growth, 2011, 315, 134-137.	1.5	17
66	Degenerate p-doping of InP nanowires for large area tunnel diodes. Applied Physics Letters, 2011, 99, .	3.3	28
67	In situ etching for total control over axial and radial nanowire growth. Nano Research, 2010, 3, 264-270.	10.4	135
68	Stability and performance of cation vacant Fe3â^'â^'V â $_{i}$ O4 spinel phase catalysts in methanol oxidation. Journal of Catalysis, 2010, 276, 24-37.	6.2	26
69	Growth and segregation of GaAs–AlxIn1â^'xP core-shell nanowires. Journal of Crystal Growth, 2010, 312, 1755-1760.	1.5	39
70	The comparison of particle oxidation and surface structure of diesel soot particles between fossil fuel and novel renewable diesel fuel. Fuel, 2010, 89, 4008-4013.	6.4	35
71	Sheet-like carbon particles with graphene structures obtained from a Bunsen flame. Carbon, 2010, 48, 4203-4206.	10.3	12
72	Control of Ill–V nanowire crystal structure by growth parameter tuning. Semiconductor Science and Technology, 2010, 25, 024009.	2.0	219

#	Article	IF	Citations
73	Changes in Contact Angle of Seed Particle Correlated with Increased Zincblende Formation in Doped InP Nanowires. Nano Letters, 2010, 10, 4807-4812.	9.1	83
74	Electrical characterization of thin InAs films grown on patterned Wâ^•GaAs substrates. Journal of Vacuum Science & Technology B, 2009, 27, 2222.	1.3	3
75	Formation of carbonated apatite particles from a supersaturated inorganic blood serum model. Journal of Materials Science: Materials in Medicine, 2009, 20, 1677-1687.	3.6	10
76	Generation of size-selected gold nanoparticles by spark discharge — for growth of epitaxial nanowires. Gold Bulletin, 2009, 42, 20-26.	2.7	51
77	Electrochemical characterization and redox behavior of Nb-doped SrTiO3. Solid State Ionics, 2009, 180, 63-70.	2.7	81
78	Niobium-Doped Strontium Titanates as SOFC Anodes. , 2009, , 203-214.		0
79	Defect and electrical transport properties of Nb-doped SrTiO3. Solid State Ionics, 2008, 179, 2047-2058.	2.7	153
80	Highâ€Quality InAs/InSb Nanowire Heterostructures Grown by Metal–Organic Vaporâ€Phase Epitaxy. Small, 2008, 4, 878-882.	10.0	160
81	Let's twist again. Nature Nanotechnology, 2008, 3, 457-458.	31.5	3
82	Electrical Properties of Self-Assembled Branched InAs Nanowire Junctions. Nano Letters, 2008, 8, 1100-1104.	9.1	56
83	Control of GaP and GaAs Nanowire Morphology through Particle and Substrate Chemical Modification. Nano Letters, 2008, 8, 4087-4091.	9.1	35
84	Strontium Titanate-based Composite Anodes for Solid Oxide Fuel Cells. ECS Transactions, 2008, 13, 181-194.	0.5	26
85	Directed Growth of Branched Nanowire Structures. MRS Bulletin, 2007, 32, 127-133.	3.5	40
86	Understanding the 3D structure of mathrm {GaAslangle 111angle B} nanowires. Nanotechnology, 2007, 18, 485717.	2.6	41
87	Height-controlled nanowire branches on nanotrees using a polymer mask. Nanotechnology, 2007, 18, 035601.	2.6	14
88	Strain mapping in free-standing heterostructured wurtzite InAs/InP nanowires. Nanotechnology, 2007, 18, 015504.	2.6	179
89	The Morphology of Axial and Branched Nanowire Heterostructures. Nano Letters, 2007, 7, 1817-1822.	9.1	175
90	Catalytic and structural effects of W-substitution in M2 Mo-V-Te-oxide for propene ammoxidation. Catalysis Today, 2007, 128, 153-160.	4.4	8

#	Article	IF	Citations
91	Synthesis of Nb-doped SrTiO3 by a modified glycine-nitrate process. Journal of the European Ceramic Society, 2007, 27, 3609-3612.	5.7	33
92	Position-Controlled Interconnected InAs Nanowire Networks. Nano Letters, 2006, 6, 2842-2847.	9.1	85
93	Structureâ^Activity Relationship in HC-SCR of NOxby TEM, O2-Chemisorption, and EDXS Study of Ag/Al2O3. Journal of Physical Chemistry B, 2006, 110, 420-427.	2.6	33
94	InAs1-xPxNanowires for Device Engineering. Nano Letters, 2006, 6, 403-407.	9.1	82
95	Effects of Sr/Ti-ratio in SrTiO3-based SOFC anodes investigated by the use of cone-shaped electrodes. Electrochimica Acta, 2006, 52, 1651-1661.	5.2	47
96	Analysis of the State and Size of Silver on Alumina in Effective Removal of NO _{<i>×</i>} from Oxygen Rich Exhaust Gas. Journal of Nanoscience and Nanotechnology, 2006, 6, 1076-1083.	0.9	4
97	CRYSTAL STRUCTURE OF BRANCHED EPITAXIAL III–V NANOTREES. Nano, 2006, 01, 139-151.	1.0	12
98	XEDS-mapping for explaining release patterns from single pellets. International Journal of Pharmaceutics, 2005, 290, 109-120.	5.2	14
99	Selective catalytic oxidation of ammonia to nitrogen at low temperature on Pt/CuO/Al2O3. Journal of Catalysis, 2005, 230, 1-13.	6.2	50
100	A New Understanding of Au-Assisted Growth of III-V Semiconductor Nanowires. Advanced Functional Materials, 2005, 15, 1603-1610.	14.9	139
101	Epitaxially grown GaP/GaAs1â^'xPx/GaP double heterostructure nanowires for optical applications. Nanotechnology, 2005, 16, 936-939.	2.6	68
102	Solid-phase Diffusion Mechanism for GaAs Nanowire Growth. Microscopy and Microanalysis, 2005, 11, .	0.4	0
103	Defect-free InP nanowires grown in [001] direction on InP (001). Applied Physics Letters, 2004, 85, 2077-2079.	3.3	173
104	A Novel Hormone-sensitive Lipase Isoform Expressed in Pancreatic \hat{l}^2 -Cells. Journal of Biological Chemistry, 2004, 279, 3828-3836.	3.4	36
105	Probing of Individual Semiconductor Nanowhiskers by TEM-STM. Microscopy and Microanalysis, 2004, 10, 41-46.	0.4	29
106	Synthesis of branched 'nanotrees' by controlled seeding of multiple branching events. Nature Materials, 2004, 3, 380-384.	27.5	592
107	Solid-phase diffusion mechanism for GaAs nanowire growth. Nature Materials, 2004, 3, 677-681.	27.5	633
108	Electron transport in InAs nanowires and heterostructure nanowire devices. Solid State Communications, 2004, 131, 573-579.	1.9	134

#	Article	IF	CITATIONS
109	Growth of one-dimensional nanostructures in MOVPE. Journal of Crystal Growth, 2004, 272, 211-220.	1.5	278
110	Semiconductor nanowires for novel one-dimensional devices. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 560-567.	2.7	63
111	Semiconductor nanowires for 0D and 1D physics and applications. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 25, 313-318.	2.7	172
112	Crystallography and porosity effects of CO conversion on mesoporous CeO2. Microporous and Mesoporous Materials, 2004, 69, 187-195.	4.4	42
113	Photoinduced Ultrafast Dynamics of Ru(dcbpy)2(NCS)2-Sensitized Nanocrystalline TiO2Films:Â The Influence of Sample Preparation and Experimental Conditions. Journal of Physical Chemistry B, 2004, 108, 6365-6373.	2.6	93
114	Epitaxial Illâ~'V Nanowires on Silicon. Nano Letters, 2004, 4, 1987-1990.	9.1	538
115	Few-Electron Quantum Dots in Nanowires. Nano Letters, 2004, 4, 1621-1625.	9.1	274
116	Amino-terminal anchored surface display in insect cells and budded baculovirus using the amino-terminal end of neuraminidase. Journal of Biotechnology, 2004, 114, 21-30.	3.8	28
117	Simulation of the release from a multiparticulate system validated by single pellet and dose release experiments. Journal of Controlled Release, 2004, 97, 453-465.	9.9	26
118	Effect of impurities on structural and electrochemical properties of the Ni–YSZ interface. Solid State lonics, 2003, 160, 27-37.	2.7	74
119	Particle Size and Crystallinity Dependent Electron Injection in Fluorescein 27-Sensitized TiO2Films. Journal of Physical Chemistry B, 2003, 107, 1370-1375.	2.6	101
120	Single-electron transistors in heterostructure nanowires. Applied Physics Letters, 2003, 83, 2052-2054.	3.3	403
121	Nanowire resonant tunneling diodes. Applied Physics Letters, 2002, 81, 4458-4460.	3.3	429
122	Morphology and Structure of CuOx/CeO2Nanocomposite Catalysts Produced by Inert Gas Condensation:Â An HREM, EFTEM, XPS, and High-Energy Diffraction Study. Chemistry of Materials, 2002, 14, 3686-3699.	6.7	80
123	One-dimensional heterostructures in semiconductor nanowhiskers. Applied Physics Letters, 2002, 80, 1058-1060.	3.3	581
124	One-dimensional Steeplechase for Electrons Realized. Nano Letters, 2002, 2, 87-89.	9.1	656
125	Growth and characterization of GaAs and InAs nano-whiskers and InAs/GaAs heterostructures. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 13, 1126-1130.	2.7	123
126	Mesoporous thin films of high-surface-area crystalline cerium dioxide. Microporous and Mesoporous Materials, 2002, 54, 97-103.	4.4	84

#	Article	IF	CITATIONS
127	Carbon Monoxide Oxidation on Nanostructured CuO/CeO Composite Particles Characterized by HREM, XPS, XAS, and High-Energy Diffraction. Journal of Catalysis, 2002, 211, 119-133.	6.2	151
128	Size dependence of Eu2+ fluorescence in ZnS:Eu2+ nanoparticles. Journal of Applied Physics, 2001, 89, 2671-2675.	2.5	57
129	Crystal field, phonon coupling and emission shift of Mn2+ in ZnS:Mn nanoparticles. Journal of Applied Physics, 2001, 89, 1120-1129.	2.5	185
130	Size-, shape-, and position-controlled GaAs nano-whiskers. Applied Physics Letters, 2001, 79, 3335-3337.	3.3	249
131	GP-zones in Al–Zn–Mg alloys and their role in artificial aging. Acta Materialia, 2001, 49, 3443-3451.	7.9	609
132	Structural characterization of the metal/glass interface in bioactive glass coatings on Ti-6Al-4V. Journal of Materials Science: Materials in Medicine, 2001, 12, 413-417.	3.6	19
133	Characterization and optical properties of CeO 2 based nanocluster composites. Scripta Materialia, 2001, 44, 1929-1932.	5.2	5
134	Simulation of electron diffraction patterns from Ill–V alloys with CuPt ordering: Effect of clusters and antiphase boundaries. Journal of Applied Physics, 2001, 89, 2653-2664.	2.5	6
135	Modulated structure of Ag2SnO3 studied by high-resolution electron microscopy. Acta Crystallographica Section B: Structural Science, 2000, 56, 363-368.	1.8	14
136	Formation and photoluminescence of Ge and Si nanoparticles encapsulated in oxide layers. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 74, 242-247.	3.5	36
137	Pressure dependence of Mn2+ fluorescence in ZnS:Mn2+ nanoparticles. Journal of Luminescence, 2000, 91, 139-145.	3.1	54
138	Effect of Titanium Substitution in â‰^SbVO4 Used for Propane Ammoxidation. Journal of Catalysis, 2000, 194, 153-166.	6.2	29
139	Synthesis and characterization of carbon filaments grown from Pd3P colloids. Journal of Materials Research, 2000, 15, 1857-1859.	2.6	3
140	Energy structure and fluorescence of Eu2+in ZnS: Eu nanoparticles. Physical Review B, 2000, 61, 11021-11024.	3.2	161
141	Evaluation of Intermittent Contact Mode AFM Probes by HREM and Using Atomically Sharp CeO2Ridges as Tip Characterizer. Langmuir, 2000, 16, 6267-6277.	3.5	34
142	HREM study and structure modeling of the Î-′ phase, the hardening precipitates in commercial Al–Zn–Mg alloys. Acta Materialia, 1999, 47, 2651-2659.	7.9	290
143	Carbon nitride nanotubulite – densely-packed and well-aligned tubular nanostructures. Chemical Physics Letters, 1999, 300, 695-700.	2.6	137
144	Carbon Monoxide Oxidation on Copper Oxide Thin Films Supported on Corrugated Cerium Dioxide {111} and {001} Surfaces. Journal of Catalysis, 1999, 181, 6-15.	6.2	41

#	Article	IF	Citations
145	Sharp microfaceting of (001)-oriented cerium dioxide thin films and the effect of annealing on surface morphology. Surface Science, 1999, 429, 22-33.	1.9	68
146	Reduction of surface sulphur upon microbial devulcanization of rubber materials. Biotechnology Letters, 1998, 20, 637-642.	2.2	35
147	Digital HREM Imaging of Yttrium Atoms in YB56with YB66Structure. Journal of Solid State Chemistry, 1998, 135, 182-193.	2.9	34
148	Structural and electrical properties of superconducting Nb/Si multilayers. Vacuum, 1998, 50, 31-33.	3.5	1
149	Strain state in semiconductor quantum dots on surfaces: a comparison of electron microscopy and finite element calculations. Surface Science, 1998, 406, 48-56.	1.9	14
150	A new silicon phosphide, Si12P5: Formation conditions, structure, and properties. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1997, 15, 394-401.	2.1	17
151	Strain relaxation and thermal stability of the 3C-SiC(001)/Si(001) interface: A molecular dynamics study. Thin Solid Films, 1997, 294, 47-49.	1.8	5
152	Combustion of CO and Toluene; Characterisation of Copper Oxide Supported on Titania and Activity Comparisons with Supported Cobalt, Iron, and Manganese Oxide. Journal of Catalysis, 1996, 163, 279-293.	6.2	171
153	In-situ growth of quantum dot structures by the Stranski-Krastanow growth mode. Progress in Crystal Growth and Characterization of Materials, 1996, 33, 423-471.	4.0	204
154	Compositional information from amorphous Si-Ge multilayers using high-resolution electron microscopy imaging and direct digital recording. Ultramicroscopy, 1996, 66, 221-235.	1.9	5
155	Growth and electronic properties of epitaxial TiN thin films on 3C-SiC(001) and 6H-SiC(0001) substrates by reactive magnetron sputtering. Journal of Materials Research, 1996, 11, 2458-2462.	2.6	17
156	Microdomains, Solid Solutions and the "Defect Fluorite" to C-Type Sesquioxide Transition in CeO2-RO1.5 and ZrO2-RO1.5 Systems. Journal of Solid State Chemistry, 1995, 120, 290-298.	2.9	29
157	Transmission electron microscopy of InP Stranski-Krastanow islands buried in GalnP. Physica Status Solidi A, 1995, 150, 479-487.	1.7	3
158	Improved size homogeneity of InP-on-GaInP Stranski-Krastanow islands by growth on a thin GaP interface layer. Journal of Crystal Growth, 1995, 156, 23-29.	1.5	57
159	Electron-beam mixing of multilayers. Vacuum, 1995, 46, 1063-1064.	3.5	1
160	Transmission electron microscopy investigation of the morphology of InP Stranski–Krastanow islands grown by metalorganic chemical vapor deposition. Applied Physics Letters, 1995, 67, 2981-2982.	3.3	107
161	Chapter 3.1 Surface area and porosity. Catalysis Today, 1994, 20, 11-16.	4.4	17
162	Chapter 6 Morphology and nanometric characterization of V2O5/TiO2 (Eurocat) catalysts. Catalysis Today, 1994, 20, 97-107.	4.4	9

#	Article	IF	Citations
163	The influence of thermal processing on structural and electrical properties of WxSi1â^'x/Si multilayers. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1994, 350, 379-390.	1.6	0
164	Reactive magnetron sputter deposition of CNx films on Si(001) substrates: film growth, microstructure and mechanical properties. Thin Solid Films, 1994, 246, 103-109.	1.8	144
165	Microstructure of amorphous C:H and metal-containing C:H films deposited on steel substrates. Thin Solid Films, 1993, 232, 169-179.	1.8	29
166	Structural characterization of yttria (Y2O3) inclusions in YBa2Cu3O7â^x films: Growth model and effect on critical current density. Thin Solid Films, 1993, 229, 237-248.	1.8	34
167	Zirconia-supported vanadium oxide catalysts for ammoxidation and oxidation of toluene: A characterization and activity study. Applied Catalysis A: General, 1993, 106, 51-72.	4.3	55
168	Characterization of interfaces between hydrogenated amorphous carbon films and steel substrates using high resolution cross-sectional transmission electron microscopy. Diamond and Related Materials, 1993, 2, 562-566.	3.9	2
169	A Study of Spreading of Vanadia on Titania Polymorphs using Mechanical Mixtures. Studies in Surface Science and Catalysis, 1993, 75, 1755-1758.	1.5	1
170	<title>Syracuse Research Corporation (SRC) ultrawide-bandwidth measurements radar</title> ., 1993, 1875, 33.		0
171	TEM study of the early stages of the precipitation process in strip-cast Al3003 alloys. Journal of Materials Research, 1992, 7, 3235-3241.	2.6	10
172	Formation of polyhedral voids at surface cusps during growth of epitaxial TiN/NbN superlattice and alloy films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1992, 10, 1618-1624.	2.1	43
173	Î-function-shaped Sb-doping profiles in Si(001) obtained using a low-energy accelerated-ion source during molecular-beam epitaxy. Physical Review B, 1992, 46, 7551-7558.	3.2	32
174	Yttrium oxide inclusions in YBa2Cu3Ox thin films. Physica C: Superconductivity and Its Applications, 1992, 202, 69-74.	1.2	61
175	Ion irradiation effects during growth of Mo/V(001) superlattices by dual-target magnetron sputtering. Journal of Crystal Growth, 1992, 121, 399-412.	1.5	19
176	Vanadia catalysts on anatase, rutile, and TiO2(B) for the ammoxidation of toluene: An ESR and high-resolution electron microscopy characterization. Journal of Catalysis, 1991, 132, 128-144.	6.2	61
177	A high-resolution electron microscopy investigation of TiO2(B)-supported vanadium oxide catalysts. Journal of Catalysis, 1990, 126, 246-260.	6.2	22
178	Vanadium oxide on TiO2(B) â€" a HREM study of catalysis by support interaction. Ultramicroscopy, 1990, 34, 33-40.	1.9	10
179	Growth and structural characterization of single-crystal (001) oriented Moî—,V superlattices. Vacuum, 1990, 41, 1231-1233.	3.5	30
180	Structural characterization of precious-mean quasiperiodic Mo/V single-crystal superlattices grown by dual-target magnetron sputtering. Physical Review B, 1990, 41, 10398-10407.	3.2	55

#	Article	IF	CITATIONS
181	On the transformation mechanism of K2Ti4O9 to TiO2(B) and formation of microvoids. Microscopy Microanalysis Microstructures, 1990, 1, 357-364.	0.4	10
182	The fluorite-related "solid solutions―of CeO2î—,Y2O3 I: A re-examination by electron microscopy and diffraction. Journal of the Less Common Metals, 1989, 156, 1-16.	0.8	35
183	The fluorite-related "solid solutions―of CeO2Y2O3 II: A modulated structure approach. Journal of the Less Common Metals, 1989, 156, 17-27.	0.8	17
184	Incipient Modulation in the New High-Temperature Superconductor:Tl2Ba2CaCu2O8. Physical Review Letters, 1988, 60, 2797-2799.	7.8	43
185	A transmission electron microscope and group theoretical study of the new Bi-based high-Tcsuperconductors and some closely related Aurivillius phases. Journal of Physics C: Solid State Physics, 1988, 21, 6067-6083.	1.5	51
186	An electron diffraction and group theoretical study of the new Bi-based high-temperature superconductor. Journal of Physics C: Solid State Physics, 1988, 21, L417-L424.	1.5	21
187	On the growth of small crystals of Cd, Zn, Pt and Rh during electron microscope observations. Journal of Crystal Growth, 1987, 80, 218-224.	1.5	20
188	Atomic-resolution study of structural rearrangements in small platinum crystals. Ultramicroscopy, 1986, 20, 71-75.	1.9	82
189	Observation of surface twin formation on gold particles by highresolution electron microscopy. Journal of Materials Science Letters, 1986, 5, 1301-1304.	0.5	7
190	Dynamic Atomic-Level Rearrangements in Small Gold Particles. Science, 1986, 233, 872-875.	12.6	283
191	Atom hopping on small gold particles imaged by high-resolution electron microscopy. Die Naturwissenschaften, 1985, 72, 539-541.	1.6	41
192	Imaging of atomic clouds outside the surfaces of gold crystals by electron microscopy. Nature, 1985, 317, 47-49.	27.8	170
193	Dynamics of small gold crystals in real time by high resolution electron microscopy. Ultramicroscopy, 1985, 17, 182.	1.9	2
194	Surface profile imaging of column-hopping in real time on gold. Ultramicroscopy, 1985, 17, 183.	1.9	0
195	On the crystal structure of small gold crystals and large gold clusters. Surface Science, 1985, 156, 256-264.	1.9	93
196	Role of the Au/III-V interaction in the Au-assisted growth of III-V branched nanostructures. , 0, , .		2
197	Coherently strained and dislocationâ€free architectured AlGaN/GaN submicronâ€sized structures. Nano Select, 0, , .	3.7	2