Ivan D. Rukhlenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/280053/publications.pdf

Version: 2024-02-01

191 papers 4,417 citations

94433 37 h-index 149698 56 g-index

193 all docs

193 docs citations

times ranked

193

3878 citing authors

#	Article	IF	CITATIONS
1	Anisotropic absorber and tunable source of MIR radiation based on a black phosphorus-SiC metasurface. Photonics and Nanostructures - Fundamentals and Applications, 2022, 50, 101020.	2.0	16
2	Epsilon-near-zero enhancement of near-field radiative heat transfer in BP/hBN and BP/ $\hat{l}\pm$ -MoO3 parallel-plate structures. Applied Physics Letters, 2022, 120, .	3.3	21
3	Thermally drawn biodegradable fibers with tailored topography for biomedical applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 733-743.	3.4	11
4	Golden Vaterite as a Mesoscopic Metamaterial for Biophotonic Applications. Advanced Materials, 2021, 33, e2008484.	21.0	27
5	Engineering Profiles of Thermally Drawn Optical Fiber Tapers. Journal of Lightwave Technology, 2021, 39, 3237-3243.	4.6	6
6	Editorial: Theory and Applications of Electromagnetic Metamaterials. Frontiers in Physics, 2021, 9, .	2.1	0
7	Hybrid surface plasmon polaritons in graphene coupled anisotropic van der Waals material waveguides. Journal Physics D: Applied Physics, 2021, 54, 455102.	2.8	12
8	Engineering spin and antiferromagnetic resonances to realize an efficient direction-multiplexed visible meta-hologram. Nanoscale Horizons, 2020, 5, 57-64.	8.0	68
9	Electrically Tunable Metasurface with Independent Frequency and Amplitude Modulations. ACS Photonics, 2020, 7, 265-271.	6.6	202
	11100011103, 2020, 7, 203 271.		
10	Multimaterial and Flexible Devices Made by Fiber Drawing. , 2020, , .		1
10		3.1	23
	Multimaterial and Flexible Devices Made by Fiber Drawing. , 2020, , . Twisted Bilayer Graphene Quantum Dots for Chiral Nanophotonics. Journal of Physical Chemistry C,	3.1	
11	Multimaterial and Flexible Devices Made by Fiber Drawing. , 2020, , . Twisted Bilayer Graphene Quantum Dots for Chiral Nanophotonics. Journal of Physical Chemistry C, 2020, 124, 22704-22710. Toward Bright Red-Emissive Carbon Dots through Controlling Interaction among Surface Emission		23
11 12	Multimaterial and Flexible Devices Made by Fiber Drawing. , 2020, , . Twisted Bilayer Graphene Quantum Dots for Chiral Nanophotonics. Journal of Physical Chemistry C, 2020, 124, 22704-22710. Toward Bright Red-Emissive Carbon Dots through Controlling Interaction among Surface Emission Centers. Journal of Physical Chemistry Letters, 2020, 11, 8121-8127. Band Structure and Intersubband Transitions of Three-Layer Semiconductor Nanoplatelets.	4.6	23
11 12 13	Multimaterial and Flexible Devices Made by Fiber Drawing., 2020,,. Twisted Bilayer Graphene Quantum Dots for Chiral Nanophotonics. Journal of Physical Chemistry C, 2020, 124, 22704-22710. Toward Bright Red-Emissive Carbon Dots through Controlling Interaction among Surface Emission Centers. Journal of Physical Chemistry Letters, 2020, 11, 8121-8127. Band Structure and Intersubband Transitions of Three-Layer Semiconductor Nanoplatelets. Nanomaterials, 2020, 10, 933. Highly transmissive bilayer Huygens' metasurface with over 315° phase coverage. AEU - International	4.6	23 34
11 12 13	Multimaterial and Flexible Devices Made by Fiber Drawing., 2020, , . Twisted Bilayer Graphene Quantum Dots for Chiral Nanophotonics. Journal of Physical Chemistry C, 2020, 124, 22704-22710. Toward Bright Red-Emissive Carbon Dots through Controlling Interaction among Surface Emission Centers. Journal of Physical Chemistry Letters, 2020, 11, 8121-8127. Band Structure and Intersubband Transitions of Three-Layer Semiconductor Nanoplatelets. Nanomaterials, 2020, 10, 933. Highly transmissive bilayer Huygens' metasurface with over 315° phase coverage. AEU - International Journal of Electronics and Communications, 2020, 124, 153330.	4.6 4.1 2.9	23 34 2 2
11 12 13 14	Multimaterial and Flexible Devices Made by Fiber Drawing. , 2020, , . Twisted Bilayer Graphene Quantum Dots for Chiral Nanophotonics. Journal of Physical Chemistry C, 2020, 124, 22704-22710. Toward Bright Red-Emissive Carbon Dots through Controlling Interaction among Surface Emission Centers. Journal of Physical Chemistry Letters, 2020, 11, 8121-8127. Band Structure and Intersubband Transitions of Three-Layer Semiconductor Nanoplatelets. Nanomaterials, 2020, 10, 933. Highly transmissive bilayer Huygens' metasurface with over 315° phase coverage. AEU - International Journal of Electronics and Communications, 2020, 124, 153330. High-efficiency ultra-thin polarization converter based on planar anisotropic transmissive metasurface. AEU - International Journal of Electronics and Communications, 2020, 118, 153141.	4.6 4.1 2.9 2.9	23 34 2 2

#	Article	IF	CITATIONS
19	Amino Functionalization of Carbon Dots Leads to Red Emission Enhancement. Journal of Physical Chemistry Letters, 2019, 10, 5111-5116.	4.6	66
20	sp ² –sp ³ -Hybridized Atomic Domains Determine Optical Features of Carbon Dots. ACS Nano, 2019, 13, 10737-10744.	14.6	136
21	Resonant mode coupling in hybrid all-dielectric metamaterial. Materials Research Express, 2019, 6, 125801.	1.6	2
22	Truly All-Dielectric Ultrabroadband Metamaterial Absorber: Water-Based and Ground-Free. IEEE Antennas and Wireless Propagation Letters, 2019, 18, 536-540.	4.0	73
23	Dielectric 2-bit coding metasurface for electromagnetic wave manipulation. Journal of Applied Physics, 2019, 125, .	2.5	38
24	Giant Stokes Shifts in AgInS ₂ Nanocrystals with Trapped Charge Carriers. Journal of Physical Chemistry C, 2019, 123, 16430-16438.	3.1	29
25	Photoluminescence of Ag-In-S/ZnS quantum dots: Excitation energy dependence and low-energy electronic structure. Nano Research, 2019, 12, 1595-1603.	10.4	43
26	Electronic and Optical Properties of Perovskite Quantum-Dot Dimer. Semiconductors, 2019, 53, 2158-2161.	0.5	1
27	Optical Activity and Circular Dichroism of Perovskite Quantum-Dot Molecules. Journal of Physical Chemistry C, 2019, 123, 2658-2664.	3.1	8
28	Thermally drawn polycaprolactone fibres with customised cross sections., 2019,,.		3
29	Highly efficient generation of Bessel beams with polarization insensitive metasurfaces. Optics Express, 2019, 27, 9467.	3.4	77
30	Electric-field-enhanced circular dichroism of helical semiconductor nanoribbons. Optics Letters, 2019, 44, 499.	3.3	6
31	Optical activity of chiral semiconductor gammadions. , 2019, , .		0
32	Electric-field effect on the optical activity of helical semiconductor nanoribbons., 2019,,.		0
33	Maser Emission from Gravitational States on Isolated Neutron Stars. Astrophysical Journal, 2018, 857, 41.	4.5	1
34	Induction of Chirality in Two-Dimensional Nanomaterials: Chiral 2D MoS ₂ Nanostructures. ACS Nano, 2018, 12, 954-964.	14.6	93
35	Excitation Energy Dependence of the Photoluminescence Quantum Yield of Core/Shell CdSe/CdS Quantum Dots and Correlation with Circular Dichroism. Chemistry of Materials, 2018, 30, 465-471.	6.7	27
36	Circular Dichroism Study of Colloidal Semiconductor Nanoscrolls. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2018, 125, 688-692.	0.6	0

#	Article	IF	Citations
37	Optical Activity of Semiconductor Nanosprings. Optics and Spectroscopy (English Translation of) Tj ETQq1 1 0.78	4314 rgBT 0.6	[Overlock
38	Theory of Frenkel Excitons in Planar Arrays of Perovskite Quantum Dots. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2018, 125, 693-697.	0.6	0
39	Excitonic phenomena in perovskite quantum-dot supercrystals. Physical Chemistry Chemical Physics, 2018, 20, 25023-25030.	2.8	10
40	Optically Active Semiconductor Nanosprings for Tunable Chiral Nanophotonics. ACS Nano, 2018, 12, 6203-6209.	14.6	14
41	Optical Activity of Semiconductor Gammadions beyond Planar Chirality. Journal of Physical Chemistry Letters, 2018, 9, 2941-2945.	4.6	20
42	Water metamaterial for ultra-broadband and wide-angle absorption. Optics Express, 2018, 26, 5052.	3.4	92
43	Nonlinear coupling states study of electromagnetic force actuated plasmonic nonlinear metamaterials. Optics Express, 2018, 26, 3211.	3.4	10
44	Optical Activity of Chiral Nanoscrolls. Advanced Optical Materials, 2017, 5, 1600982.	7.3	29
45	Absorption properties of one- and two-dimensional semiconductor nanocrystals in the presence of an electric field. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2017, 122, 101-105.	0.6	2
46	Intraband optical activity of semiconductor nanocrystals. Chirality, 2017, 29, 159-166.	2.6	13
47	Optical activity of semiconductor nanocrystals with ionic impurities. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2017, 122, 64-68.	0.6	2
48	Effect of Extinction on Separation of Nanoparticle Enantiomers With Chiral Optical Forces. IEEE Photonics Journal, 2017, 9, 1-6.	2.0	2
49	Optical activity of helical quantum-dot supercrystals. Optics and Spectroscopy (English Translation) Tj ETQq1 1 0.	784314 rg 0.6	;BJT /Overlo
50	Chiral nanoparticles in singular light fields. Scientific Reports, 2017, 7, 45925.	3.3	14
51	Analytical study of optical activity of chiral-shape nanocrystals. , 2017, , .		4
52	Optical Anisotropy of Topologically Distorted Semiconductor Nanocrystals. Nano Letters, 2017, 17, 5514-5520.	9.1	24
53	Chiral Optical Properties of TaperedÂSemiconductor Nanoscrolls. ACS Nano, 2017, 11, 7508-7515.	14.6	32
54	Multiband coherent perfect absorption in a water-based metasurface. Optics Express, 2017, 25, 15737.	3.4	56

#	Article	IF	CITATIONS
55	Experimental observation of the topological structure of exceptional points in an ultrathin hybridized metamaterial. Physical Review A, 2017, 96, .	2.5	12
56	Optically active quantum-dot molecules. Optics Express, 2017, 25, 3811.	3.4	17
57	Analytical theory of real-argument Laguerre–Gaussian beams beyond the paraxial approximation. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2017, 34, 1940.	1.5	5
58	Wideband visible-light absorption in an ultrathin silicon nanostructure. Optics Express, 2017, 25, 5781.	3.4	50
59	Excitons in gyrotropic quantum-dot supercrystals. Optics Letters, 2017, 42, 2423.	3.3	9
60	Completely Chiral Optical Force for Enantioseparation. Scientific Reports, 2016, 6, 36884.	3.3	57
61	Mixing of quantum states: A new route to creating optical activity. Scientific Reports, 2016, 6, 5.	3.3	28
62	Optical activity of chirally distorted nanocrystals. Journal of Applied Physics, 2016, 119, 194302.	2.5	28
63	Shape-induced optical activity of chiral nanocrystals. Optics Letters, 2016, 41, 2438.	3.3	30
64	Engineering Optical Activity of Semiconductor Nanocrystals via Ion Doping. Nanophotonics, 2016, 5, 573-578.	6.0	24
65	Circular Dichroism of Electric-Field-Oriented CdSe/CdS Quantum Dots-in-Rods. ACS Nano, 2016, 10, 8904-8909.	14.6	12
66	Chiral quantum supercrystals with total dissymmetry of optical response. Scientific Reports, 2016, 6, 23321.	3.3	23
67	Field-Induced Broadening of Electroabsorption Spectra of Semiconductor Nanorods and Nanoplatelets. Journal of Physical Chemistry C, 2016, 120, 2379-2385.	3.1	24
68	Quantum theory of electroabsorption in semiconductor nanocrystals. Optics Express, 2016, 24, A52.	3.4	20
69	Guided Plasmon Modes of a Graphene-Coated Kerr Slab. Plasmonics, 2016, 11, 735-741.	3.4	24
70	Chapter 3 Modeling Nonlinear Optical Phenomena in Silicon Nanocrystal Structures., 2016,, 61-108.		0
71	Electroabsorption of a semiconductor nanocuboid. Journal of Optical Technology (A Translation of) Tj ETQq1 1 C).784314 ı 0.4	gBT /Overloc
72	Radiative decay rates of impurity states in semiconductor nanocrystals. AIP Advances, 2015, 5, 107126.	1.3	1

#	Article	IF	Citations
73	Giant Optical Activity of Quantum Dots, Rods and Disks with Screw Dislocations. Scientific Reports, 2015, 5, 14712.	3.3	49
74	Recent Advances in Theory and Applications of Electromagnetic Metamaterials. International Journal of Antennas and Propagation, 2015, 2015, 1-2.	1.2	0
75	Dislocation-Induced Chirality of Semiconductor Nanocrystals. Nano Letters, 2015, 15, 1710-1715.	9.1	64
76	Photoluminescence of a quantum-dot molecule. Journal of Applied Physics, 2015, 117, 014306.	2.5	11
77	Optical transitions in a complex valence band of semiconductor nanocrystals. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2015, 82, 743.	0.4	0
78	Doped quantum dots for photovoltaics. , 2014, , .		0
79	Low-threshold lasing in photonic-crystal heterostructures. Optics Express, 2014, 22, 6229.	3.4	18
80	Phonon-assisted photoluminescence from a semiconductor quantum dot with resonant electron and phonon subsystems. Optics Express, 2014, 22, 19707.	3.4	2
81	Response to "Comment on â€~Graphene metamaterial for optical reflection modulation'―[Appl. Phys. Lett. 104, 256101 (2014)]. Applied Physics Letters, 2014, 104, 256102.	3.3	1
82	Tunable Broadband Optical Responses of Substrate-Supported Metal/Dielectric/Metal Nanospheres. Plasmonics, 2014, 9, 659-672.	3.4	28
83	Spaser Made of Graphene and Carbon Nanotubes. ACS Nano, 2014, 8, 2431-2438.	14.6	52
84	Polarization conversion in U-shaped chiral metamaterial with four-fold symmetry breaking. Journal of Applied Physics, 2014, 115, .	2.5	35
85	Modeling nonlinear optical phenomena in silicon-nanocrystal composites and waveguides. Journal of Optics (United Kingdom), 2014, 16, 015207.	2.2	7
86	Harnessing the Shape-Induced Optical Anisotropy of a Semiconductor Nanocrystal: A New Type of Intraband Absorption Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 2867-2876.	3.1	11
87	Raman Amplification in Silicon-Nanocrystal Waveguides. Journal of Lightwave Technology, 2014, 32, 130-134.	4.6	20
88	Transient photoluminescence from semiconductor nanodumbbells., 2014,,.		0
89	Electroabsorption by OD, 1D, and 2D Nanocrystals: A Comparative Study of CdSe Colloidal Quantum Dots, Nanorods, and Nanoplatelets. ACS Nano, 2014, 8, 7678-7686.	14.6	7 5
90	Phonon-induced photoluminescence from a single quantum dot in the regime vibrational resonance. , 2014, , .		0

#	Article	IF	CITATIONS
91	Optical Propagation Through Graded-Index Metamaterials in the Presence of Gain. Plasmonics, 2014, 9, 1257-1263.	3.4	1
92	Transient pump-probe absorption spectroscopy of semiconductor nanodumbbells. , 2014, , .		0
93	Level Anticrossing of Impurity States in Semiconductor Nanocrystals. Scientific Reports, 2014, 4, 6917.	3.3	23
94	Optimized gold nanoshell ensembles for biomedical applications. Nanoscale Research Letters, 2013, 8, 142.	5.7	38
95	Wideband giant optical activity and negligible circular dichroism of near-infrared chiral metamaterial based on a complementary twisted configuration. Journal of Optics (United Kingdom), 2013, 15, 125101.	2.2	30
96	Spectroscopy of intraband optical transitions in anisotropic semiconductor nanocrystals. , 2013, , .		0
97	Application of zero-index metamaterials for surface plasmon guiding. Applied Physics Letters, 2013, 102, 011910.	3.3	17
98	Nanoscale quantum-dot supercrystals., 2013,,.		0
99	Time-resolved pump-probe spectroscopy of intraband absorption by a semiconductor nanorod. Proceedings of SPIE, 2013, , .	0.8	0
100	Single-crystal caged gold nanorods with tunable broadband plasmon resonances. Chemical Communications, 2013, 49, 9630.	4.1	43
101	Engineering band structure in nanoscale quantum-dot supercrystals. Optics Letters, 2013, 38, 2259.	3.3	22
102	Graphene-enabled tunability of optical fishnet metamaterial. Applied Physics Letters, 2013, 102, .	3.3	46
103	Analysis of Lasing in Dye-Doped Photonic Crystals. IEEE Photonics Journal, 2013, 5, 4700409-4700409.	2.0	20
104	Quantum-dot supercrystals for future nanophotonics. Scientific Reports, 2013, 3, .	3.3	47
105	Graphene metamaterial for optical reflection modulation. Applied Physics Letters, 2013, 102, .	3.3	90
106	Transient intraband absorption of light by semiconductor nanorods. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2013, 80, 648.	0.4	2
107	Low-threshold lasing in active opal photonic crystals. Optics Letters, 2013, 38, 1046.	3.3	13
108	Effect of number density on optimal design of gold nanoshells for plasmonic photothermal therapy. Biomedical Optics Express, 2013, 4, 15.	2.9	41

#	Article	IF	CITATIONS
109	Unveiling ultrasharp scattering–switching signatures of layered gold–dielectric–gold nanospheres. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 2066.	2.1	22
110	Theory of nonlinear pulse propagation in silicon-nanocrystal waveguides. Optics Express, 2013, 21, 2832.	3.4	11
111	Design optimization of spasers considering the degeneracy of excited plasmon modes. Optics Express, 2013, 21, 15335.	3.4	7
112	Engineering optical nonlinearities in silicon–nanocrystal waveguides. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 3145.	2.1	3
113	Optical properties and aging of PbS quantum dots embedded in a porous matrix. Proceedings of SPIE, 2013, , .	0.8	1
114	Analytical study of optimal design and gain parameters of double-slot plasmonic waveguides. Journal of Optics (United Kingdom), 2013, 15, 035006.	2.2	5
115	Tunable low-threshold lasing in photonic-crystal heterostructure. , 2013, , .		0
116	Spatial and spectral distributions of emission from dye-doped photonic crystals in reflection and transmission geometries. Journal of Nanophotonics, 2012, 6, 063526.	1.0	13
117	Shape-induced anisotropy of intraband luminescence from a semiconductor nanocrystal. Optics Letters, 2012, 37, 4645.	3.3	15
118	Optimizing the design of planar heterostructures for plasmonic waveguiding. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 553.	2.1	10
119	Effective third-order susceptibility of silicon-nanocrystal-doped silica. Optics Express, 2012, 20, 26275.	3.4	20
120	Kinetics of pulse-induced photoluminescence from a semiconductor quantum dot. Optics Express, 2012, 20, 27612.	3.4	16
121	Linear transformation optics for plasmonics. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 2659.	2.1	40
122	Manipulating energy flow in variable-gap plasmonic waveguides. Optics Letters, 2012, 37, 5151.	3.3	7
123	Maneuvering Propagation of Surface Plasmon Polaritons Using Complementary Medium Inserts. IEEE Photonics Journal, 2012, 4, 741-747.	2.0	23
124	Optimization of Nonlinear Performance of Silicon-Nanocrystal Cylindrical Nanowires. IEEE Photonics Journal, 2012, 4, 952-959.	2.0	6
125	Guided plasmonic modes of anisotropic slot waveguides. Nanotechnology, 2012, 23, 444006.	2.6	26
126	Size-dependent room-temperature luminescence decay from PbS quantum dots. Proceedings of SPIE, 2012, , .	0.8	10

#	Article	IF	Citations
127	Combined Effect of ASE and DRBS on Noise in Pulse-Pumped Fiber Raman Amplifiers. Journal of Lightwave Technology, 2012, 30, 2983-2987.	4.6	6
128	Phonon-assisted secondary emission from a semiconductor quantum dot in the regime of vibrational resonance. , 2012, , .		0
129	Pauli equation for semiconductor quantum dot photoluminescence kinetics investigation. , 2012, , .		0
130	A novel approach towards modeling TDM-pumped fiber Raman amplifiers. , 2012, , .		0
131	Configurable metamaterial absorber with pseudo wideband spectrum. Optics Express, 2012, 20, 6616.	3.4	96
132	Kinetics of thermalized luminescence of a single quantum dot at room temperature. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2012, 113, 259-264.	0.6	4
133	Kinetics of resonance luminescence of a single quantum dot at room temperature. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2012, 113, 265-270.	0.6	2
134	Anomalous Size-Dependent Decay of Low-Energy Luminescence from PbS Quantum Dots in Colloidal Solution. ACS Nano, 2012, 6, 8913-8921.	14.6	95
135	Free-Standing Plasmonic-Nanorod Superlattice Sheets. ACS Nano, 2012, 6, 925-934.	14.6	132
136	Effective mode area and its optimization in silicon-nanocrystal waveguides. Optics Letters, 2012, 37, 2295.	3.3	53
137	Plasmonic Modes of Metamaterial-Based Slot Waveguides. Advances in OptoElectronics, 2012, 2012, 1-5.	0.6	2
138	Modern Trends in Metamaterial Applications. Advances in OptoElectronics, 2012, 2012, 1-2.	0.6	1
139	Light amplification in zero-index metamaterial with gain inserts. Applied Physics Letters, 2012, 101, 031907.	3.3	39
140	Optimum design of single-core nanowaveguide for surface plasmon polaritons., 2011,,.		0
141	Plasmonic waveguides with resonant-cavity structures for nanophotonics applications. , $2011, \ldots$		0
142	Polarization-dependent spectral broadening of femtosecond pulses in silicon waveguides. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 2383.	2.1	2
143	Analytical theory of optical bistability in plasmonic nanoresonators. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 2820.	2.1	22
144	Exact dispersion relation for nonlinear plasmonic waveguides. Physical Review B, 2011, 84, .	3.2	41

#	Article	IF	CITATIONS
145	Nonlinear propagation in silicon-based plasmonic waveguides from the standpoint of applications. Optics Express, 2011, 19, 206.	3.4	40
146	Theory of quasi-elastic secondary emission from a quantum dot in the regime of vibrational resonance. Optics Express, 2011, 19, 15459.	3.4	17
147	Optimal design of composite nanowires for extended reach of surface plasmon-polaritons. Optics Express, 2011, 19, 16058.	3.4	25
148	Surface plasmon-polariton propagation in piecewise linear chains of composite nanospheres: The role of optical gain and chain layout. Optics Express, 2011, 19, 19973.	3.4	36
149	Dispersion relation for surface plasmon polaritons in metal/nonlinear-dielectric/metal slot waveguides. Optics Letters, 2011, 36, 3374. Complex- <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>3.3</td><td>42</td></mml:math>	3.3	42
150	display="inline"> <mml:mrow><mml:mi> mi> mi> mi ml:mrow>approach versus complex-<mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>k</mml:mi></mml:mrow></mml:math>approach in description of gain-assisted surface plasmon-polariton propagation along linear chains of metallic nanospheres.</mml:mi></mml:mrow>	3.2	30
151	Physical Review B, 2011, 83, . Maximization of Gain in Slow-Light Silicon Raman Amplifiers. International Journal of Optics, 2011, 2011, 1-7.	1.4	7
152	Analytical modeling of plasmonic-waveguide-based devices for nanophotonic applications. , 2011, , .		0
153	Analytical Modeling of Resonant Cavities for Plasmonic-Slot-Waveguide Junctions. IEEE Photonics Journal, 2011, 3, 220-233.	2.0	56
154	Chains of metallic nanoparticles embedded in a gain medium as ideal plasmonic waveguides. , 2011, , .		0
155	Propagation of surface plasmon-polaritons in linear chains of metallic nanoparticles embedded in a gain medium. , $2011,\ldots$		0
156	Raman Amplification and Tunable Pulse Delays in Silicon Waveguides. , 2010, , .		0
157	Nonlinear Silicon Photonics: Analytical Tools. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 200-215.	2.9	70
158	Optimization of Raman Amplification in Silicon Waveguides With Finite Facet Reflectivities. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 226-233.	2.9	13
159	Numerical modeling of optical pulse propagation in silicon waveguides: The finite-difference time-domain approach. , 2010, , .		0
160	Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure. Optics Express, 2010, 18, 6191.	3.4	203
161	Analytical study of pulse amplification in silicon Raman amplifiers. Optics Express, 2010, 18, 18324.	3.4	9
162	FDTD modeling of anisotropic nonlinear optical phenomena in silicon waveguides. Optics Express, 2010, 18, 21427.	3.4	42

#	Article	IF	CITATIONS
163	Theory of negative refraction in periodic stratified metamaterials. Optics Express, 2010, 18, 27916.	3.4	8
164	Analytical study of optical bistability in silicon ring resonators. Optics Letters, 2010, 35, 55.	3.3	60
165	Visualization of electromagnetic-wave polarization evolution using the Poincaré sphere. Optics Letters, 2010, 35, 2221.	3.3	5
166	Effect of free carriers on pump-to-signal noise transfer in silicon Raman amplifiers. Optics Letters, 2010, 35, 2343.	3.3	8
167	Spectral compression and group delay of optical pulses in silicon Raman amplifiers. Optics Letters, 2010, 35, 3138.	3.3	13
168	Optimization of gain-assisted waveguiding in metal–dielectric nanowires. Optics Letters, 2010, 35, 4190.	3.3	26
169	Multipath Interference in Pulse-Pumped Fiber Raman Amplifiers: Analytical Approach. Journal of Lightwave Technology, 2010, 28, 2701-2707.	4.6	8
170	Experimental characterization of TDM-pumped distributed Raman amplifier with commercial laser diode controller. , 2010, , .		1
171	Polarization Rotation in Silicon Waveguides: Analytical Modeling and Applications. IEEE Photonics Journal, 2010, 2, 423-435.	2.0	6
172	Novel directions in Raman amplifier research. , 2009, , .		2
173	Continuous-wave Raman amplification in silicon waveguides: beyond the undepleted pump approximation. Optics Letters, 2009, 34, 536.	3.3	30
174	Analytical Study of RIN Transfer in Pulse-Pumped Raman Amplifiers. Journal of Lightwave Technology, 2009, 27, 4536-4543.	4.6	8
175	Maximization of net optical gain in silicon-waveguide Raman amplifiers. Optics Express, 2009, 17, 5807.	3.4	23
176	Spontaneous emission of guided polaritons by quantum dot coupled to metallic nanowire: Beyond the dipole approximation. Optics Express, 2009, 17, 17570.	3.4	42
177	Coupling of light from microdisk lasers into plasmonic nano-antennas. Optics Express, 2009, 17, 20878.	3.4	48
178	Unified perfectly matched layer for finite-difference time-domain modeling of dispersive optical materials. Optics Express, 2009, 17, 21179.	3.4	26
179	Analytical study of optical bistability in silicon-waveguide resonators. Optics Express, 2009, 17, 22124.	3.4	30
180	Nonlinear Pulse Evolution in Silicon Waveguides: An Approximate Analytic Approach. Journal of Lightwave Technology, 2009, 27, 3241-3248.	4.6	14

#	Article	IF	CITATIONS
181	Raman-Mediated Nonlinear Interactions in Silicon Waveguides: Copropagating and Counterpropagating Pulses. IEEE Photonics Technology Letters, 2009, 21, 1372-1374.	2.5	12
182	Tip-enhanced secondary emission of a semiconductor quantum dot. Physical Review B, 2008, 77, .	3.2	2
183	Quantum dot energy relaxation mediated by plasmon emission in doped covalent semiconductor heterostructures. Physical Review B, 2007, 76, .	3.2	19
184	Propagation of electric fields induced by optical phonons in semiconductor heterostructures. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2006, 100, 238-244.	0.6	25
185	Study of electronic dynamics of quantum dots using resonant photoluminescence technique. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2006, 100, 716-723.	0.6	9
186	Penetration of electric fields induced by surface phonon modes into the layers of a semiconductor heterostructure. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2006, 101, 253-264.	0.6	25
187	Enhanced intraband carrier relaxation in quantum dots due to the effect of plasmon–LO-phonon density of states in doped heterostructures. Physical Review B, 2005, 71, .	3.2	29
188	New many-body mechanism of intraband carrier relaxation in quantum dots embedded in doped heterostructures. Solid State Communications, 2003, 128, 219-223.	1.9	25
189	New mechanism of intraband carrier relaxation in quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 1217-1220.	0.8	2
190	Pellet injectors developed at the PELIN laboratory for international projects. Fusion Engineering and Design, 2001, 58-59, 295-299.	1.9	8
191	Microwave metasurface hologram for holographic imaging and its data encryption applications. Journal of Optics (United Kingdom), 0, , .	2.2	5