Ivan D. Rukhlenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/280053/publications.pdf

Version: 2024-02-01

191 papers 4,417 citations

94433 37 h-index 149698 56 g-index

193 all docs

193 docs citations

times ranked

193

3878 citing authors

#	Article	IF	CITATIONS
1	Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure. Optics Express, 2010, 18, 6191.	3.4	203
2	Electrically Tunable Metasurface with Independent Frequency and Amplitude Modulations. ACS Photonics, 2020, 7, 265-271.	6.6	202
3	sp ² –sp ³ -Hybridized Atomic Domains Determine Optical Features of Carbon Dots. ACS Nano, 2019, 13, 10737-10744.	14.6	136
4	Free-Standing Plasmonic-Nanorod Superlattice Sheets. ACS Nano, 2012, 6, 925-934.	14.6	132
5	Configurable metamaterial absorber with pseudo wideband spectrum. Optics Express, 2012, 20, 6616.	3.4	96
6	Anomalous Size-Dependent Decay of Low-Energy Luminescence from PbS Quantum Dots in Colloidal Solution. ACS Nano, 2012, 6, 8913-8921.	14.6	95
7	Induction of Chirality in Two-Dimensional Nanomaterials: Chiral 2D MoS ₂ Nanostructures. ACS Nano, 2018, 12, 954-964.	14.6	93
8	Water metamaterial for ultra-broadband and wide-angle absorption. Optics Express, 2018, 26, 5052.	3.4	92
9	Graphene metamaterial for optical reflection modulation. Applied Physics Letters, 2013, 102, .	3.3	90
10	Highly efficient generation of Bessel beams with polarization insensitive metasurfaces. Optics Express, 2019, 27, 9467.	3.4	77
11	Electroabsorption by 0D, 1D, and 2D Nanocrystals: A Comparative Study of CdSe Colloidal Quantum Dots, Nanorods, and Nanoplatelets. ACS Nano, 2014, 8, 7678-7686.	14.6	75
12	Truly All-Dielectric Ultrabroadband Metamaterial Absorber: Water-Based and Ground-Free. IEEE Antennas and Wireless Propagation Letters, 2019, 18, 536-540.	4.0	73
13	Nonlinear Silicon Photonics: Analytical Tools. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 200-215.	2.9	70
14	Engineering spin and antiferromagnetic resonances to realize an efficient direction-multiplexed visible meta-hologram. Nanoscale Horizons, 2020, 5, 57-64.	8.0	68
15	Amino Functionalization of Carbon Dots Leads to Red Emission Enhancement. Journal of Physical Chemistry Letters, 2019, 10, 5111-5116.	4.6	66
16	Dislocation-Induced Chirality of Semiconductor Nanocrystals. Nano Letters, 2015, 15, 1710-1715.	9.1	64
17	Analytical study of optical bistability in silicon ring resonators. Optics Letters, 2010, 35, 55.	3.3	60
18	Completely Chiral Optical Force for Enantioseparation. Scientific Reports, 2016, 6, 36884.	3.3	57

#	Article	IF	CITATIONS
19	Analytical Modeling of Resonant Cavities for Plasmonic-Slot-Waveguide Junctions. IEEE Photonics Journal, 2011, 3, 220-233.	2.0	56
20	Multiband coherent perfect absorption in a water-based metasurface. Optics Express, 2017, 25, 15737.	3.4	56
21	Effective mode area and its optimization in silicon-nanocrystal waveguides. Optics Letters, 2012, 37, 2295.	3.3	53
22	Spaser Made of Graphene and Carbon Nanotubes. ACS Nano, 2014, 8, 2431-2438.	14.6	52
23	Wideband visible-light absorption in an ultrathin silicon nanostructure. Optics Express, 2017, 25, 5781.	3.4	50
24	Giant Optical Activity of Quantum Dots, Rods and Disks with Screw Dislocations. Scientific Reports, 2015, 5, 14712.	3.3	49
25	Coupling of light from microdisk lasers into plasmonic nano-antennas. Optics Express, 2009, 17, 20878.	3.4	48
26	Quantum-dot supercrystals for future nanophotonics. Scientific Reports, 2013, 3, .	3.3	47
27	Graphene-enabled tunability of optical fishnet metamaterial. Applied Physics Letters, 2013, 102, .	3.3	46
28	Single-crystal caged gold nanorods with tunable broadband plasmon resonances. Chemical Communications, 2013, 49, 9630.	4.1	43
29	Photoluminescence of Ag-In-S/ZnS quantum dots: Excitation energy dependence and low-energy electronic structure. Nano Research, 2019, 12, 1595-1603.	10.4	43
30	Spontaneous emission of guided polaritons by quantum dot coupled to metallic nanowire: Beyond the dipole approximation. Optics Express, 2009, 17, 17570.	3.4	42
31	FDTD modeling of anisotropic nonlinear optical phenomena in silicon waveguides. Optics Express, 2010, 18, 21427.	3.4	42
32	Dispersion relation for surface plasmon polaritons in metal/nonlinear-dielectric/metal slot waveguides. Optics Letters, 2011, 36, 3374.	3.3	42
33	Exact dispersion relation for nonlinear plasmonic waveguides. Physical Review B, 2011, 84, .	3.2	41
34	Effect of number density on optimal design of gold nanoshells for plasmonic photothermal therapy. Biomedical Optics Express, 2013, 4, 15.	2.9	41
35	Nonlinear propagation in silicon-based plasmonic waveguides from the standpoint of applications. Optics Express, 2011, 19, 206.	3.4	40
36	Linear transformation optics for plasmonics. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 2659.	2.1	40

#	Article	IF	CITATIONS
37	Light amplification in zero-index metamaterial with gain inserts. Applied Physics Letters, 2012, 101, 031907.	3.3	39
38	Optimized gold nanoshell ensembles for biomedical applications. Nanoscale Research Letters, 2013, 8, 142.	5.7	38
39	Dielectric 2-bit coding metasurface for electromagnetic wave manipulation. Journal of Applied Physics, 2019, 125, .	2.5	38
40	Surface plasmon-polariton propagation in piecewise linear chains of composite nanospheres: The role of optical gain and chain layout. Optics Express, 2011, 19, 19973.	3.4	36
41	Polarization conversion in U-shaped chiral metamaterial with four-fold symmetry breaking. Journal of Applied Physics, 2014, 115, .	2.5	35
42	Toward Bright Red-Emissive Carbon Dots through Controlling Interaction among Surface Emission Centers. Journal of Physical Chemistry Letters, 2020, 11, 8121-8127.	4.6	34
43	Chiral Optical Properties of TaperedÂSemiconductor Nanoscrolls. ACS Nano, 2017, 11, 7508-7515.	14.6	32
44	Continuous-wave Raman amplification in silicon waveguides: beyond the undepleted pump approximation. Optics Letters, 2009, 34, 536.	3.3	30
45	Analytical study of optical bistability in silicon-waveguide resonators. Optics Express, 2009, 17, 22124.	3.4	30
46	Complex- <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>\%</mml:mi></mml:mrow></mml:math> approach versus complex- <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi></mml:mi></mml:mrow></mml:math> approach in description of gain-assisted surface plasmon-polariton propagation along linear chains of metallic nanospheres.	3.2	30
47	Physical Review B, 2011, 83, . Wideband giant optical activity and negligible circular dichroism of near-infrared chiral metamaterial based on a complementary twisted configuration. Journal of Optics (United Kingdom), 2013, 15, 125101.	2.2	30
48	Shape-induced optical activity of chiral nanocrystals. Optics Letters, 2016, 41, 2438.	3.3	30
49	Enhanced intraband carrier relaxation in quantum dots due to the effect of plasmon–LO-phonon density of states in doped heterostructures. Physical Review B, 2005, 71, .	3.2	29
50	Optical Activity of Chiral Nanoscrolls. Advanced Optical Materials, 2017, 5, 1600982.	7.3	29
51	Giant Stokes Shifts in AgInS ₂ Nanocrystals with Trapped Charge Carriers. Journal of Physical Chemistry C, 2019, 123, 16430-16438.	3.1	29
52	Tunable Broadband Optical Responses of Substrate-Supported Metal/Dielectric/Metal Nanospheres. Plasmonics, 2014, 9, 659-672.	3.4	28
53	Mixing of quantum states: A new route to creating optical activity. Scientific Reports, 2016, 6, 5.	3.3	28
54	Optical activity of chirally distorted nanocrystals. Journal of Applied Physics, 2016, 119, 194302.	2.5	28

#	Article	IF	CITATIONS
55	Excitation Energy Dependence of the Photoluminescence Quantum Yield of Core/Shell CdSe/CdS Quantum Dots and Correlation with Circular Dichroism. Chemistry of Materials, 2018, 30, 465-471.	6.7	27
56	Golden Vaterite as a Mesoscopic Metamaterial for Biophotonic Applications. Advanced Materials, 2021, 33, e2008484.	21.0	27
57	Unified perfectly matched layer for finite-difference time-domain modeling of dispersive optical materials. Optics Express, 2009, 17, 21179.	3.4	26
58	Optimization of gain-assisted waveguiding in metal–dielectric nanowires. Optics Letters, 2010, 35, 4190.	3.3	26
59	Guided plasmonic modes of anisotropic slot waveguides. Nanotechnology, 2012, 23, 444006.	2.6	26
60	New many-body mechanism of intraband carrier relaxation in quantum dots embedded in doped heterostructures. Solid State Communications, 2003, 128, 219-223.	1.9	25
61	Propagation of electric fields induced by optical phonons in semiconductor heterostructures. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2006, 100, 238-244.	0.6	25
62	Penetration of electric fields induced by surface phonon modes into the layers of a semiconductor heterostructure. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2006, 101, 253-264.	0.6	25
63	Optimal design of composite nanowires for extended reach of surface plasmon-polaritons. Optics Express, 2011, 19, 16058.	3.4	25
64	Engineering Optical Activity of Semiconductor Nanocrystals via Ion Doping. Nanophotonics, 2016, 5, 573-578.	6.0	24
65	Field-Induced Broadening of Electroabsorption Spectra of Semiconductor Nanorods and Nanoplatelets. Journal of Physical Chemistry C, 2016, 120, 2379-2385.	3.1	24
66	Guided Plasmon Modes of a Graphene-Coated Kerr Slab. Plasmonics, 2016, 11, 735-741.	3 . 4	24
67	Optical Anisotropy of Topologically Distorted Semiconductor Nanocrystals. Nano Letters, 2017, 17, 5514-5520.	9.1	24
68	Tunable plasmon-phonon polaritons in anisotropic 2D materials on hexagonal boron nitride. Nanophotonics, 2020, 9, 3909-3920.	6.0	24
69	Maximization of net optical gain in silicon-waveguide Raman amplifiers. Optics Express, 2009, 17, 5807.	3.4	23
70	Maneuvering Propagation of Surface Plasmon Polaritons Using Complementary Medium Inserts. IEEE Photonics Journal, 2012, 4, 741-747.	2.0	23
71	Level Anticrossing of Impurity States in Semiconductor Nanocrystals. Scientific Reports, 2014, 4, 6917.	3.3	23
72	Chiral quantum supercrystals with total dissymmetry of optical response. Scientific Reports, 2016, 6, 23321.	3.3	23

#	Article	IF	CITATIONS
73	Twisted Bilayer Graphene Quantum Dots for Chiral Nanophotonics. Journal of Physical Chemistry C, 2020, 124, 22704-22710.	3.1	23
74	Analytical theory of optical bistability in plasmonic nanoresonators. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 2820.	2.1	22
75	Engineering band structure in nanoscale quantum-dot supercrystals. Optics Letters, 2013, 38, 2259.	3.3	22
76	Unveiling ultrasharp scattering–switching signatures of layered gold–dielectric–gold nanospheres. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 2066.	2.1	22
77	Epsilon-near-zero enhancement of near-field radiative heat transfer in BP/hBN and BP/α-MoO3 parallel-plate structures. Applied Physics Letters, 2022, 120, .	3.3	21
78	Effective third-order susceptibility of silicon-nanocrystal-doped silica. Optics Express, 2012, 20, 26275.	3.4	20
79	Analysis of Lasing in Dye-Doped Photonic Crystals. IEEE Photonics Journal, 2013, 5, 4700409-4700409.	2.0	20
80	Raman Amplification in Silicon-Nanocrystal Waveguides. Journal of Lightwave Technology, 2014, 32, 130-134.	4.6	20
81	Quantum theory of electroabsorption in semiconductor nanocrystals. Optics Express, 2016, 24, A52.	3.4	20
82	Optical Activity of Semiconductor Gammadions beyond Planar Chirality. Journal of Physical Chemistry Letters, 2018, 9, 2941-2945.	4.6	20
83	Quantum dot energy relaxation mediated by plasmon emission in doped covalent semiconductor heterostructures. Physical Review B, 2007, 76, .	3.2	19
84	Low-threshold lasing in photonic-crystal heterostructures. Optics Express, 2014, 22, 6229.	3.4	18
85	Theory of quasi-elastic secondary emission from a quantum dot in the regime of vibrational resonance. Optics Express, 2011, 19, 15459.	3.4	17
86	Application of zero-index metamaterials for surface plasmon guiding. Applied Physics Letters, 2013, 102, 011910.	3.3	17
87	Optically active quantum-dot molecules. Optics Express, 2017, 25, 3811.	3.4	17
88	Kinetics of pulse-induced photoluminescence from a semiconductor quantum dot. Optics Express, 2012, 20, 27612.	3.4	16
89	Anisotropic absorber and tunable source of MIR radiation based on a black phosphorus-SiC metasurface. Photonics and Nanostructures - Fundamentals and Applications, 2022, 50, 101020.	2.0	16
90	Shape-induced anisotropy of intraband luminescence from a semiconductor nanocrystal. Optics Letters, 2012, 37, 4645.	3.3	15

#	Article	IF	Citations
91	High-efficiency ultra-thin polarization converter based on planar anisotropic transmissive metasurface. AEU - International Journal of Electronics and Communications, 2020, 118, 153141.	2.9	15
92	Nonlinear Pulse Evolution in Silicon Waveguides: An Approximate Analytic Approach. Journal of Lightwave Technology, 2009, 27, 3241-3248.	4.6	14
93	Chiral nanoparticles in singular light fields. Scientific Reports, 2017, 7, 45925.	3.3	14
94	Optically Active Semiconductor Nanosprings for Tunable Chiral Nanophotonics. ACS Nano, 2018, 12, 6203-6209.	14.6	14
95	Optimization of Raman Amplification in Silicon Waveguides With Finite Facet Reflectivities. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 226-233.	2.9	13
96	Spectral compression and group delay of optical pulses in silicon Raman amplifiers. Optics Letters, 2010, 35, 3138.	3.3	13
97	Spatial and spectral distributions of emission from dye-doped photonic crystals in reflection and transmission geometries. Journal of Nanophotonics, 2012, 6, 063526.	1.0	13
98	Low-threshold lasing in active opal photonic crystals. Optics Letters, 2013, 38, 1046.	3.3	13
99	Intraband optical activity of semiconductor nanocrystals. Chirality, 2017, 29, 159-166.	2.6	13
100	Raman-Mediated Nonlinear Interactions in Silicon Waveguides: Copropagating and Counterpropagating Pulses. IEEE Photonics Technology Letters, 2009, 21, 1372-1374.	2.5	12
101	Circular Dichroism of Electric-Field-Oriented CdSe/CdS Quantum Dots-in-Rods. ACS Nano, 2016, 10, 8904-8909.	14.6	12
102	Experimental observation of the topological structure of exceptional points in an ultrathin hybridized metamaterial. Physical Review A, 2017, 96, .	2.5	12
103	Hybrid surface plasmon polaritons in graphene coupled anisotropic van der Waals material waveguides. Journal Physics D: Applied Physics, 2021, 54, 455102.	2.8	12
104	Theory of nonlinear pulse propagation in silicon-nanocrystal waveguides. Optics Express, 2013, 21, 2832.	3.4	11
105	Harnessing the Shape-Induced Optical Anisotropy of a Semiconductor Nanocrystal: A New Type of Intraband Absorption Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 2867-2876.	3.1	11
106	Photoluminescence of a quantum-dot molecule. Journal of Applied Physics, 2015, 117, 014306.	2.5	11
107	Thermally drawn biodegradable fibers with tailored topography for biomedical applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 733-743.	3.4	11
108	Optimizing the design of planar heterostructures for plasmonic waveguiding. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 553.	2.1	10

#	Article	IF	Citations
109	Size-dependent room-temperature luminescence decay from PbS quantum dots. Proceedings of SPIE, 2012, , .	0.8	10
110	Excitonic phenomena in perovskite quantum-dot supercrystals. Physical Chemistry Chemical Physics, 2018, 20, 25023-25030.	2.8	10
111	Nonlinear coupling states study of electromagnetic force actuated plasmonic nonlinear metamaterials. Optics Express, 2018, 26, 3211.	3.4	10
112	Study of electronic dynamics of quantum dots using resonant photoluminescence technique. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2006, 100, 716-723.	0.6	9
113	Analytical study of pulse amplification in silicon Raman amplifiers. Optics Express, 2010, 18, 18324.	3.4	9
114	Excitons in gyrotropic quantum-dot supercrystals. Optics Letters, 2017, 42, 2423.	3.3	9
115	Pellet injectors developed at the PELIN laboratory for international projects. Fusion Engineering and Design, 2001, 58-59, 295-299.	1.9	8
116	Analytical Study of RIN Transfer in Pulse-Pumped Raman Amplifiers. Journal of Lightwave Technology, 2009, 27, 4536-4543.	4.6	8
117	Theory of negative refraction in periodic stratified metamaterials. Optics Express, 2010, 18, 27916.	3.4	8
118	Effect of free carriers on pump-to-signal noise transfer in silicon Raman amplifiers. Optics Letters, 2010, 35, 2343.	3.3	8
119	Multipath Interference in Pulse-Pumped Fiber Raman Amplifiers: Analytical Approach. Journal of Lightwave Technology, 2010, 28, 2701-2707.	4.6	8
120	Optical Activity and Circular Dichroism of Perovskite Quantum-Dot Molecules. Journal of Physical Chemistry C, 2019, 123, 2658-2664.	3.1	8
121	Performance Optimization of Polymer Fibre Actuators for Soft Robotics. Polymers, 2020, 12, 454.	4.5	8
122	Maximization of Gain in Slow-Light Silicon Raman Amplifiers. International Journal of Optics, 2011, 2011, 1-7.	1.4	7
123	Manipulating energy flow in variable-gap plasmonic waveguides. Optics Letters, 2012, 37, 5151.	3.3	7
124	Design optimization of spasers considering the degeneracy of excited plasmon modes. Optics Express, 2013, 21, 15335.	3.4	7
125	Modeling nonlinear optical phenomena in silicon-nanocrystal composites and waveguides. Journal of Optics (United Kingdom), 2014, 16, 015207.	2.2	7
126	Polarization Rotation in Silicon Waveguides: Analytical Modeling and Applications. IEEE Photonics Journal, 2010, 2, 423-435.	2.0	6

#	Article	IF	Citations
127	Optimization of Nonlinear Performance of Silicon-Nanocrystal Cylindrical Nanowires. IEEE Photonics Journal, 2012, 4, 952-959.	2.0	6
128	Combined Effect of ASE and DRBS on Noise in Pulse-Pumped Fiber Raman Amplifiers. Journal of Lightwave Technology, 2012, 30, 2983-2987.	4.6	6
129	Engineering Profiles of Thermally Drawn Optical Fiber Tapers. Journal of Lightwave Technology, 2021, 39, 3237-3243.	4.6	6
130	Electric-field-enhanced circular dichroism of helical semiconductor nanoribbons. Optics Letters, 2019, 44, 499.	3.3	6
131	Visualization of electromagnetic-wave polarization evolution using the Poincaré sphere. Optics Letters, 2010, 35, 2221.	3.3	5
132	Analytical study of optimal design and gain parameters of double-slot plasmonic waveguides. Journal of Optics (United Kingdom), 2013, 15, 035006.	2.2	5
133	Analytical theory of real-argument Laguerre–Gaussian beams beyond the paraxial approximation. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2017, 34, 1940.	1.5	5
134	Microwave metasurface hologram for holographic imaging and its data encryption applications. Journal of Optics (United Kingdom), 0, , .	2.2	5
135	Kinetics of thermalized luminescence of a single quantum dot at room temperature. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2012, 113, 259-264.	0.6	4
136	Analytical study of optical activity of chiral-shape nanocrystals. , 2017, , .		4
137	Engineering optical nonlinearities in silicon–nanocrystal waveguides. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 3145.	2.1	3
138	Optical activity of helical quantum-dot supercrystals. Optics and Spectroscopy (English Translation) Tj ETQq0 0 () rgBT /Ove	erlgck 10 Tf 5
139	Thermally drawn polycaprolactone fibres with customised cross sections. , 2019, , .		3
140	New mechanism of intraband carrier relaxation in quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 1217-1220.	0.8	2
141	Tip-enhanced secondary emission of a semiconductor quantum dot. Physical Review B, 2008, 77, .	3.2	2
142	Novel directions in Raman amplifier research. , 2009, , .		2
143	Polarization-dependent spectral broadening of femtosecond pulses in silicon waveguides. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 2383.	2.1	2
144	Kinetics of resonance luminescence of a single quantum dot at room temperature. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2012, 113, 265-270.	0.6	2

#	Article	IF	CITATIONS
145	Plasmonic Modes of Metamaterial-Based Slot Waveguides. Advances in OptoElectronics, 2012, 2012, 1-5.	0.6	2
146	Transient intraband absorption of light by semiconductor nanorods. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2013, 80, 648.	0.4	2
147	Phonon-assisted photoluminescence from a semiconductor quantum dot with resonant electron and phonon subsystems. Optics Express, 2014, 22, 19707.	3.4	2
148	Absorption properties of one- and two-dimensional semiconductor nanocrystals in the presence of an electric field. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2017, 122, 101-105.	0.6	2
149	Optical activity of semiconductor nanocrystals with ionic impurities. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2017, 122, 64-68.	0.6	2
150	Effect of Extinction on Separation of Nanoparticle Enantiomers With Chiral Optical Forces. IEEE Photonics Journal, 2017, 9, 1-6.	2.0	2
151	Resonant mode coupling in hybrid all-dielectric metamaterial. Materials Research Express, 2019, 6, 125801.	1.6	2
152	Band Structure and Intersubband Transitions of Three-Layer Semiconductor Nanoplatelets. Nanomaterials, 2020, 10, 933.	4.1	2
153	Highly transmissive bilayer Huygens' metasurface with over 315° phase coverage. AEU - International Journal of Electronics and Communications, 2020, 124, 153330.	2.9	2
154	Experimental characterization of TDM-pumped distributed Raman amplifier with commercial laser diode controller. , 2010 , , .		1
155	Modern Trends in Metamaterial Applications. Advances in OptoElectronics, 2012, 2012, 1-2.	0.6	1
156	Optical properties and aging of PbS quantum dots embedded in a porous matrix. Proceedings of SPIE, 2013, , .	0.8	1
157	Response to "Comment on â€~Graphene metamaterial for optical reflection modulation'―[Appl. Phys. Lett. 104, 256101 (2014)]. Applied Physics Letters, 2014, 104, 256102.	3.3	1
158	Optical Propagation Through Graded-Index Metamaterials in the Presence of Gain. Plasmonics, 2014, 9, 1257-1263.	3.4	1
159	Electroabsorption of a semiconductor nanocuboid. Journal of Optical Technology (A Translation of) Tj ETQq1 1 0.	784314 rg	gBŢ /Overlock
160	Radiative decay rates of impurity states in semiconductor nanocrystals. AIP Advances, 2015, 5, 107126.	1.3	1
161	Maser Emission from Gravitational States on Isolated Neutron Stars. Astrophysical Journal, 2018, 857, 41.	4.5	1

Optical Activity of Semiconductor Nanosprings. Optics and Spectroscopy (English Translation of) Tj ETQq0 0 0 rg BT/ $_{0}$ (See Fig. 10 Tf 50 optical Activity of Semiconductor Nanosprings).

162

#	Article	IF	CITATIONS
163	Electronic and Optical Properties of Perovskite Quantum-Dot Dimer. Semiconductors, 2019, 53, 2158-2161.	0.5	1
164	Multimaterial and Flexible Devices Made by Fiber Drawing. , 2020, , .		1
165	Nonparabolicity of size-quantized subbands of bilayer semiconductor quantum wells with heterojunction. Optics Express, 2020, 28, 1657.	3.4	1
166	Raman Amplification and Tunable Pulse Delays in Silicon Waveguides. , 2010, , .		0
167	Numerical modeling of optical pulse propagation in silicon waveguides: The finite-difference time-domain approach., 2010, , .		0
168	Optimum design of single-core nanowaveguide for surface plasmon polaritons., 2011,,.		0
169	Plasmonic waveguides with resonant-cavity structures for nanophotonics applications. , 2011, , .		0
170	Analytical modeling of plasmonic-waveguide-based devices for nanophotonic applications. , $2011, \ldots$		0
171	Chains of metallic nanoparticles embedded in a gain medium as ideal plasmonic waveguides. , 2011, , .		0
172	Propagation of surface plasmon-polaritons in linear chains of metallic nanoparticles embedded in a gain medium. , $2011, , .$		0
173	Phonon-assisted secondary emission from a semiconductor quantum dot in the regime of vibrational resonance., 2012,,.		0
174	Pauli equation for semiconductor quantum dot photoluminescence kinetics investigation. , 2012, , .		0
175	A novel approach towards modeling TDM-pumped fiber Raman amplifiers. , 2012, , .		0
176	Spectroscopy of intraband optical transitions in anisotropic semiconductor nanocrystals., 2013,,.		0
177	Nanoscale quantum-dot supercrystals. , 2013, , .		0
178	Time-resolved pump-probe spectroscopy of intraband absorption by a semiconductor nanorod. Proceedings of SPIE, 2013, , .	0.8	0
179	Doped quantum dots for photovoltaics. , 2014, , .		0
180	Transient photoluminescence from semiconductor nanodumbbells. , 2014, , .		0

#	Article	IF	CITATIONS
181	Phonon-induced photoluminescence from a single quantum dot in the regime vibrational resonance. , 2014, , .		O
182	Transient pump-probe absorption spectroscopy of semiconductor nanodumbbells., 2014,,.		0
183	Recent Advances in Theory and Applications of Electromagnetic Metamaterials. International Journal of Antennas and Propagation, 2015, 2015, 1-2.	1.2	O
184	Circular Dichroism Study of Colloidal Semiconductor Nanoscrolls. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2018, 125, 688-692.	0.6	0
185	Theory of Frenkel Excitons in Planar Arrays of Perovskite Quantum Dots. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2018, 125, 693-697.	0.6	O
186	Editorial: Theory and Applications of Electromagnetic Metamaterials. Frontiers in Physics, 2021, 9, .	2.1	0
187	Tunable low-threshold lasing in photonic-crystal heterostructure. , 2013, , .		O
188	Optical transitions in a complex valence band of semiconductor nanocrystals. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2015, 82, 743.	0.4	0
189	Chapter 3 Modeling Nonlinear Optical Phenomena in Silicon Nanocrystal Structures. , 2016, , 61-108.		O
190	Optical activity of chiral semiconductor gammadions. , 2019, , .		0
191	Electric-field effect on the optical activity of helical semiconductor nanoribbons. , 2019, , .		O