List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2800321/publications.pdf Version: 2024-02-01

		24978	22102
337	17,517	57	113
papers	citations	h-index	g-index
362	362	362	22591
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Monoallelic KIF1A-related disorders: a multicenter cross sectional study and systematic literature review. Journal of Neurology, 2022, 269, 437-450.	1.8	12
2	Novel retinal finding in a patient with 4q12 deletion. Ophthalmic Genetics, 2022, 43, 120-122.	0.5	0
3	A case of spastic paraplegia type 11 mimicking a GM2-gangliosidosis. Neurological Sciences, 2022, 43, 2849-2852.	0.9	Ο
4	Common, low-frequency, rare, and ultra-rare coding variants contribute to COVID-19 severity. Human Genetics, 2022, 141, 147-173.	1.8	22
5	The polymorphism L412F in <i>TLR3</i> inhibits autophagy and is a marker of severe COVID-19 in males. Autophagy, 2022, 18, 1662-1672.	4.3	25
6	The 2019 and 2021 International Workshops on Alport Syndrome. European Journal of Human Genetics, 2022, 30, 507-516.	1.4	12
7	Predictive genetic testing for Motor neuron disease: time for a guideline?. European Journal of Human Genetics, 2022, 30, 635-636.	1.4	2
8	Development and Implementation of the AIDA International Registry for Patients With Still's Disease. Frontiers in Medicine, 2022, 9, 878797.	1.2	9
9	Rare variants in Toll-like receptor 7 results in functional impairment and downregulation of cytokine-mediated signaling in COVID-19 patients. Genes and Immunity, 2022, 23, 51-56.	2.2	41
10	Guidelines for Genetic Testing and Management of Alport Syndrome. Clinical Journal of the American Society of Nephrology: CJASN, 2022, 17, 143-154.	2.2	49
11	The microRNA processor <i>DROSHA</i> is a candidate gene for a severe progressive neurological disorder. Human Molecular Genetics, 2022, 31, 2934-2950.	1.4	6
12	Identification of a Novel SHANK2 Pathogenic Variant in a Patient with a Neurodevelopmental Disorder. Genes, 2022, 13, 688.	1.0	7
13	Understanding the new <scp><i>BRD4</i></scp> â€related syndrome: Clinical and genomic delineation with an international cohort study. Clinical Genetics, 2022, 102, 117-122.	1.0	3
14	Host genetic basis of COVID-19: from methodologies to genes. European Journal of Human Genetics, 2022, 30, 899-907.	1.4	13
15	Multiomic analysis reveals cell-type-specific molecular determinants of COVID-19 severity. Cell Systems, 2022, 13, 598-614.e6.	2.9	10
16	Carriers of ADAMTS13 Rare Variants Are at High Risk of Life-Threatening COVID-19. Viruses, 2022, 14, 1185.	1.5	1
17	Novel genes and sex differences in COVID-19 severity. Human Molecular Genetics, 2022, 31, 3789-3806.	1.4	38
18	Possible association of 16p11.2 copy number variation with altered lymphocyte and neutrophil counts. Npj Genomic Medicine, 2022, 7, .	1.7	3

#	Article	IF	CITATIONS
19	Pathogen-sugar interactions revealed by universal saturation transfer analysis. Science, 2022, 377, .	6.0	24
20	Geographical distribution of cystic fibrosis carriers as population genetic determinant of COVID-19 spread and fatality in 37 countries. Journal of Infection, 2022, 85, 318-321.	1.7	6
21	Nosological and Theranostic Approach to Vascular Malformation through cfDNA NGS Liquid Biopsy. Journal of Clinical Medicine, 2022, 11, 3740.	1.0	8
22	Digenic Alport Syndrome. Clinical Journal of the American Society of Nephrology: CJASN, 2022, 17, 1697-1706.	2.2	19
23	A pilot study of next generation sequencing–liquid biopsy on cell-free DNA as a novel non-invasive diagnostic tool for Klippel–Trenaunay syndrome. Vascular, 2021, 29, 85-91.	0.4	14
24	The effect of angiotensin-converting enzyme levels on COVID-19 susceptibility and severity: a Mendelian randomization study. International Journal of Epidemiology, 2021, 50, 75-86.	0.9	10
25	MET somatic activating mutations are responsible for lymphovenous malformation and can be identified using cell-free DNA next generation sequencing liquid biopsy. Journal of Vascular Surgery: Venous and Lymphatic Disorders, 2021, 9, 740-744.	0.9	7
26	CDKL5 mutations may mimic Pitt-Hopkins syndrome phenotype. European Journal of Medical Genetics, 2021, 64, 104102.	0.7	0
27	A new mutation in DNM2 gene in a large Italian family. Neurological Sciences, 2021, 42, 2509-2513.	0.9	1
28	<scp><i>IQSEC2</i></scp> disorder: A new disease entity or a Rett spectrum continuum?. Clinical Genetics, 2021, 99, 462-474.	1.0	11
29	Employing a systematic approach to biobanking and analyzing clinical and genetic data for advancing COVID-19 research. European Journal of Human Genetics, 2021, 29, 745-759.	1.4	35
30	Anakinra and canakinumab for patients with R92Q-associated autoinflammatory syndrome: a multicenter observational study from the AIDA Network. Therapeutic Advances in Musculoskeletal Disease, 2021, 13, 1759720X2110371.	1.2	1
31	Epilepsy in Nicolaides–Baraitser Syndrome: Review of Literature and Report of 25 Patients Focusing on Treatment Aspects. Neuropediatrics, 2021, 52, 109-122.	0.3	2
32	Shorter androgen receptor polyQ alleles protect against life-threatening COVID-19 disease in European males. EBioMedicine, 2021, 65, 103246.	2.7	52
33	Association of Toll-like receptor 7 variants with life-threatening COVID-19 disease in males: findings from a nested case-control study. ELife, 2021, 10, .	2.8	145
34	Protective Role of a TMPRSS2 Variant on Severe COVID-19 Outcome in Young Males and Elderly Women. Genes, 2021, 12, 596.	1.0	39
35	Consensus statement on standards and guidelines for the molecular diagnostics of Alport syndrome: refining the ACMG criteria. European Journal of Human Genetics, 2021, 29, 1186-1197.	1.4	61
36	Solving unsolved rare neurological diseases—a Solve-RD viewpoint. European Journal of Human Genetics, 2021, 29, 1332-1336.	1.4	4

#	Article	IF	CITATIONS
37	Drug survival of anakinra and canakinumab in monogenic autoinflammatory diseases: observational study from the International AIDA Registry. Rheumatology, 2021, 60, 5705-5712.	0.9	4
38	The phenomenon of multidrug resistance in glioblastomas. Hematology/ Oncology and Stem Cell Therapy, 2021, , .	0.6	10
39	In response to the letter to the editor by Soha Ghanian etÂal. re our publication "Shorter androgen receptor polyQ alleles protect against life-threatening COVID-19 disease in European males― EBioMedicine, 2021, 68, 103426.	2.7	0
40	Severe COVID-19 in Hospitalized Carriers of Single CFTR Pathogenic Variants. Journal of Personalized Medicine, 2021, 11, 558.	1.1	16
41	Solve-RD: systematic pan-European data sharing and collaborative analysis to solve rare diseases. European Journal of Human Genetics, 2021, 29, 1325-1331.	1.4	49
42	A MT-TL1 variant identified by whole exome sequencing in an individual with intellectual disability, epilepsy, and spastic tetraparesis. European Journal of Human Genetics, 2021, 29, 1359-1368.	1.4	7
43	C9orf72 Intermediate Repeats Confer Genetic Risk for Severe COVID-19 Pneumonia Independently of Age. International Journal of Molecular Sciences, 2021, 22, 6991.	1.8	12
44	Solving patients with rare diseases through programmatic reanalysis of genome-phenome data. European Journal of Human Genetics, 2021, 29, 1337-1347.	1.4	34
45	Vitamin D and COVID-19 susceptibility and severity in the COVID-19 Host Genetics Initiative: A Mendelian randomization study. PLoS Medicine, 2021, 18, e1003605.	3.9	91
46	Clinical, molecular and glycophenotype insights in SLC39A8-CDG. Orphanet Journal of Rare Diseases, 2021, 16, 307.	1.2	4
47	Exome Sequencing in 200 Intellectual Disability/Autistic Patients: New Candidates and Atypical Presentations. Brain Sciences, 2021, 11, 936.	1.1	17
48	Biotechnological Agents for Patients With Tumor Necrosis Factor Receptor Associated Periodic Syndrome—Therapeutic Outcome and Predictors of Response: Real-Life Data From the AIDA Network. Frontiers in Medicine, 2021, 8, 668173.	1.2	6
49	Mapping the human genetic architecture of COVID-19. Nature, 2021, 600, 472-477.	13.7	640
50	SELP Asp603Asn and severe thrombosis in COVID-19 males. Journal of Hematology and Oncology, 2021, 14, 123.	6.9	11
51	13q Deletion Syndrome Involving RB1: Characterization of a New Minimal Critical Region for Psychomotor Delay. Genes, 2021, 12, 1318.	1.0	2
52	Age-dependent impact of the major common genetic risk factor for COVID-19 on severity and mortality. Journal of Clinical Investigation, 2021, 131, .	3.9	72
53	Genetic mechanisms of critical illness in COVID-19. Nature, 2021, 591, 92-98.	13.7	1,014
54	Related expression of TRKA and P75 receptors and the changing copy number of <i>MYC</i> -oncogenes determine the sensitivity of brain tumor cells to the treatment of the nerve growth factor in combination with cisplatin and temozolomide. Drug Metabolism and Personalized Therapy, 2021, .	0.3	1

#	Article	IF	CITATIONS
55	Autism Spectrum Disorders: Analysis of Mobile Elements at 7q11.23 Williams–Beuren Region by Comparative Genomics. Genes, 2021, 12, 1605.	1.0	1
56	Identification of a Novel Pathogenic Variant in the NAGLU Gene in a Child with Neurodevelopmental Delay. Journal of Autism and Developmental Disorders, 2021, , 1.	1.7	0
57	Exome sequencing in BRCA1-2 candidate familias: the contribution of other cancer susceptibility genes. Frontiers in Oncology, 2021, 11, 649435.	1.3	2
58	Post-Mendelian Genetic Model in COVID-19. Cardiology and Cardiovascular Medicine, 2021, 05, .	0.1	10
59	JNK signaling provides a novel therapeutic target for Rett syndrome. BMC Biology, 2021, 19, 256.	1.7	6
60	New Candidates for Autism/Intellectual Disability Identified by Whole-Exome Sequencing. International Journal of Molecular Sciences, 2021, 22, 13439.	1.8	23
61	Governance of Access in Biobanking: The Case of Telethon Network of Genetic Biobanks. Biopreservation and Biobanking, 2021, 19, 483-492.	0.5	1
62	Spondyloocular Syndrome: A Novel XYLT2 Variant with Description of the Neonatal Phenotype. Frontiers in Genetics, 2021, 12, 761264.	1.1	4
63	MEIS2 gene is responsible for intellectual disability, cardiac defects and a distinct facial phenotype. European Journal of Medical Genetics, 2020, 63, 103627.	0.7	23
64	Testing single/combined clinical categories on 5110 Italian patients with developmental phenotypes to improve arrayâ€based detection rate. Molecular Genetics & Genomic Medicine, 2020, 8, e1056.	0.6	6
65	New frontiers to cure Alport syndrome: COL4A3 and COL4A5 gene editing in podocyte-lineage cells. European Journal of Human Genetics, 2020, 28, 480-490.	1.4	22
66	Detection of Cryptic Mosaicism in X-linked Alport Syndrome Prompts to Re-evaluate Living-donor Kidney Transplantation. Transplantation, 2020, 104, 2360-2364.	0.5	4
67	SLC12A2 variants cause a neurodevelopmental disorder or cochleovestibular defect. Brain, 2020, 143, 2380-2387.	3.7	34
68	ACE2 gene variants may underlie interindividual variability and susceptibility to COVID-19 in the Italian population. European Journal of Human Genetics, 2020, 28, 1602-1614.	1.4	208
69	Variants in the SK2 channel gene (KCNN2) lead to dominant neurodevelopmental movement disorders. Brain, 2020, 143, 3564-3573.	3.7	23
70	RB1 Germline Variant Predisposing to a Rare Ovarian Germ Cell Tumor: A Case Report. Frontiers in Oncology, 2020, 10, 1467.	1.3	1
71	Vestibular and audiological findings in the Alport syndrome. American Journal of Medical Genetics, Part A, 2020, 182, 2345-2358.	0.7	6
72	Clinical Features at Onset and Genetic Characterization of Pediatric and Adult Patients with TNF- <i>α</i> Receptor—Associated Periodic Syndrome (TRAPS): A Series of 80 Cases from the AIDA Network. Mediators of Inflammation, 2020, 2020, 1-12.	1.4	24

#	Article	IF	CITATIONS
73	A novel mutation in LMX1B gene in a newborn with nailâ€patella syndrome: Clinical and dermoscopic findings. Pediatric Dermatology, 2020, 37, 1205-1206.	0.5	2
74	X-Linked Alport Syndrome in Women: Genotype and Clinical Course in 24 Cases. Frontiers in Medicine, 2020, 7, 580376.	1.2	14
75	Cell-free DNA next-generation sequencing liquid biopsy as a new revolutionary approach for arteriovenous malformation. JVS Vascular Science, 2020, 1, 176-180.	0.4	17
76	High rate of HDR in gene editing of p.(Thr158Met) MECP2 mutational hotspot. European Journal of Human Genetics, 2020, 28, 1231-1242.	1.4	10
77	Assessment of haptoglobin alleles in autism spectrum disorders. Scientific Reports, 2020, 10, 7758.	1.6	2
78	AAV-mediated FOXG1 gene editing in human Rett primary cells. European Journal of Human Genetics, 2020, 28, 1446-1458.	1.4	12
79	Role of Colchicine Treatment in Tumor Necrosis Factor Receptor Associated Periodic Syndrome (TRAPS): Real-Life Data from the AIDA Network. Mediators of Inflammation, 2020, 2020, 1-6.	1.4	7
80	Gene replacement ameliorates deficits in mouse and human models of cyclin-dependent kinase-like 5 disorder. Brain, 2020, 143, 811-832.	3.7	34
81	Improved Diagnosis of Rare Disease Patients through Systematic Detection of Runs of Homozygosity. Journal of Molecular Diagnostics, 2020, 22, 1205-1215.	1.2	14
82	Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism. Cell, 2020, 180, 568-584.e23.	13.5	1,422
83	Twoâ€pointâ€NCS analysis of cancer genes in cellâ€free DNA of metastatic cancer patients. Cancer Medicine, 2020, 9, 2052-2061.	1.3	8
84	An Italian family carrying a new mutation in the COL4A1 gene. Journal of the Neurological Sciences, 2020, 414, 116815.	0.3	0
85	Telemedicine strategy of the European Reference Network ITHACA for the diagnosis and management of patients with rare developmental disorders. Orphanet Journal of Rare Diseases, 2020, 15, 103.	1.2	23
86	17p13.3 microdeletion including YWHAE and CRK genes: towards a clinical characterization. Neurological Sciences, 2020, 41, 2259-2262.	0.9	9
87	Human CRY1 variants associate with attention deficit/hyperactivity disorder. Journal of Clinical Investigation, 2020, 130, 3885-3900.	3.9	35
88	Clinical and molecular characterization of COVID-19 hospitalized patients. PLoS ONE, 2020, 15, e0242534.	1.1	25
89	Related expression of TRKA and P75 receptors and the changing copy number of <i>MYC</i> -oncogenes determine the sensitivity of brain tumor cells to the treatment of the nerve growth factor in combination with cisplatin and temozolomide. Drug Metabolism and Drug Interactions, 2020, 35, .	0.3	0
90	Expert consensus guidelines for the genetic diagnosis of Alport syndrome. Pediatric Nephrology, 2019, 34, 1175-1189.	0.9	97

#	Article	IF	CITATIONS
91	A glomerulus-on-a-chip to recapitulate the human glomerular filtration barrier. Nature Communications, 2019, 10, 3656.	5.8	137
92	PIK3CA-CDKN2A clonal evolution in metastatic breast cancer and multiple points cell-free DNA analysis. Cancer Cell International, 2019, 19, 274.	1.8	1
93	Diagnosis and management in Pittâ€Hopkins syndrome: First international consensus statement. Clinical Genetics, 2019, 95, 462-478.	1.0	63
94	Heterozygous Variants in KMT2E Cause a Spectrum of Neurodevelopmental Disorders and Epilepsy. American Journal of Human Genetics, 2019, 104, 1210-1222.	2.6	56
95	Usefulness and Limitations of Comprehensive Characterization of mRNA Splicing Profiles in the Definition of the Clinical Relevance of BRCA1/2 Variants of Uncertain Significance. Cancers, 2019, 11, 295.	1.7	24
96	Non-collagen genes role in digenic Alport syndrome. BMC Nephrology, 2019, 20, 70.	0.8	16
97	Agingâ€associated genes and <i>letâ€7</i> microRNAs: a contribution to myogenic program dysregulation in oculopharyngeal muscular dystrophy. FASEB Journal, 2019, 33, 7155-7167.	0.2	19
98	Analysis of the Phenotypes in the Rett Networked Database. International Journal of Genomics, 2019, 2019, 1-9.	0.8	23
99	Hints for Genetic and Clinical Differentiation of Adult-Onset Monogenic Autoinflammatory Diseases. Mediators of Inflammation, 2019, 2019, 1-29.	1.4	17
100	Rare variants in the genetic background modulate cognitive and developmental phenotypes in individuals carrying disease-associated variants. Genetics in Medicine, 2019, 21, 816-825.	1.1	127
101	Evidence of predisposing epimutation in retinoblastoma. Human Mutation, 2019, 40, 201-206.	1.1	16
102	Lowâ€level <i><scp>TP</scp>53</i> mutational load antecedes clonal expansion in chronic lymphocytic leukaemia. British Journal of Haematology, 2019, 184, 657-659.	1.2	2
103	Specific clonal expansion at disease progression (PD) in solid cancers pinpointed by cell free DNA analysis Journal of Clinical Oncology, 2019, 37, e13144-e13144.	0.8	0
104	Altered expression of RXFP1 receptor contributes to the inefficacy of relaxin-based anti-fibrotic treatments in systemic sclerosis. Clinical and Experimental Rheumatology, 2019, 37 Suppl 119, 69-75.	0.4	4
105	<i>CKAP2L</i> mutation confirms the diagnosis of Filippi syndrome. Clinical Genetics, 2018, 93, 1109-1110.	1.0	9
106	Parent-of-origin effect of hypomorphic pathogenic variants and somatic mosaicism impact on phenotypic expression of retinoblastoma. European Journal of Human Genetics, 2018, 26, 1026-1037.	1.4	19
107	Regulatory variants of FOXG1 in the context of its topological domain organisation. European Journal of Human Genetics, 2018, 26, 186-196.	1.4	20
108	Phenotype and genotype of 87 patients with Mowat–Wilson syndrome and recommendations for care. Genetics in Medicine, 2018, 20, 965-975.	1.1	67

#	Article	IF	CITATIONS
109	Alport syndrome: a unified classification of genetic disorders of collagen IV α345: a position paper of the Alport Syndrome Classification Working Group. Kidney International, 2018, 93, 1045-1051.	2.6	206
110	Germline mutations in lung cancer and personalized medicine. Familial Cancer, 2018, 17, 429-430.	0.9	5
111	Personalized therapy in a GRIN1 mutated girl with intellectual disability and epilepsy. Clinical Dysmorphology, 2018, 27, 18-20.	0.1	7
112	Urine-derived podocytes-lineage cells: A promising tool for precision medicine in Alport Syndrome. Human Mutation, 2018, 39, 302-314.	1.1	16
113	Commentary: Potential Links between Hepadnavirus and Bornavirus Sequences in the Host Genome and Cancer. Frontiers in Microbiology, 2018, 9, 1649.	1.5	0
114	Functional Connectivity and Genetic Profile of a "Double-Cortex―Like Malformation. Frontiers in Integrative Neuroscience, 2018, 12, 22.	1.0	11
115	iPSC-derived neurons profiling reveals GABAergic circuit disruption and acetylated α-tubulin defect which improves after iHDAC6 treatment in Rett syndrome. Experimental Cell Research, 2018, 368, 225-235.	1.2	36
116	Omic Approach in Non-smoker Female with Lung Squamous Cell Carcinoma Pinpoints to Germline Susceptibility and Personalized Medicine. Cancer Research and Treatment, 2018, 50, 356-365.	1.3	20
117	AB0185â€Altered expression of relaxin receptor rxfp1/lgr7 in dermal fibroblasts contributes to the inefficacy of relaxin-based anti-fibrotic treatments in systemic sclerosis. , 2018, , .		0
118	Advances and unmet needs in genetic, basic and clinical science in Alport syndrome: report from the 2015 International Workshop on Alport Syndrome. Nephrology Dialysis Transplantation, 2017, 32, gfw095.	0.4	40
119	Inherited human IRAK-1 deficiency selectively impairs TLR signaling in fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E514-E523.	3.3	49
120	Microduplication of the ARID1A gene causes intellectual disability with recognizable syndromic features. Genetics in Medicine, 2017, 19, 701-710.	1.1	13
121	Combined ultrasound and exome sequencing approach recognizes Opitz G/BBB syndrome in two malformed fetuses. Clinical Dysmorphology, 2017, 26, 18-25.	0.1	3
122	Alport syndrome: impact of digenic inheritance in patients management. Clinical Genetics, 2017, 92, 34-44.	1.0	52
123	De novo microdeletions and point mutations affecting <i>SOX2</i> in three individuals with intellectual disability but without major eye malformations. American Journal of Medical Genetics, Part A, 2017, 173, 435-443.	0.7	19
124	Intersociety policy statement on the use of whole-exome sequencing in the critically ill newborn infant. Italian Journal of Pediatrics, 2017, 43, 100.	1.0	51
125	Novel promoters and coding first exons in DLG2 linked to developmental disorders and intellectual disability. Genome Medicine, 2017, 9, 67.	3.6	29
126	Potentially Treatable Disorder Diagnosed Post Mortem by Exome Analysis in a Boy with Respiratory Distress. International Journal of Molecular Sciences, 2016, 17, 306.	1.8	5

#	Article	IF	CITATIONS
127	A Genome Wide Copy Number Variations Analysis in Autism Spectrum Disorder (Asd) and Intellectual Disability (Id) in Italian Families. Journal of Genetic Syndromes & Gene Therapy, 2016, 7, .	0.2	3
128	Nicolaides–Baraitser syndrome: defining a phenotype. Journal of Neurology, 2016, 263, 1659-1660.	1.8	4
129	Exome sequencing analysis in a pair of monozygotic twins re-evaluates the genetics behind their intellectual disability and reveals a CHD2 mutation. Brain and Development, 2016, 38, 590-596.	0.6	11
130	Exome sequencing coupled with mRNA analysis identifies NDUFAF6 as a Leigh gene. Molecular Genetics and Metabolism, 2016, 119, 214-222.	0.5	21
131	Exploiting the potential of next-generation sequencing in genomic medicine. Expert Review of Molecular Diagnostics, 2016, 16, 1037-1047.	1.5	5
132	Copy number variation analysis in adults with catatonia confirms haploinsufficiency of SHANK3 as a predisposing factor. European Journal of Medical Genetics, 2016, 59, 436-443.	0.7	20
133	The alliance between genetic biobanks and patient organisations: the experience of the telethon network of genetic biobanks. Orphanet Journal of Rare Diseases, 2016, 11, 142.	1.2	40
134	Clonality Analysis of Immunoglobulin Gene Rearrangement by Next-Generation Sequencing in Endemic Burkitt Lymphoma Suggests Antigen Drive Activation of BCR as Opposed to Sporadic Burkitt Lymphoma. American Journal of Clinical Pathology, 2016, 145, 116-127.	0.4	35
135	Visual impairment in FOXG1-mutated individuals and mice. Neuroscience, 2016, 324, 496-508.	1.1	41
136	MECP2 missense mutations outside the canonical MBD and TRD domains in males with intellectual disability. Journal of Human Genetics, 2016, 61, 95-101.	1.1	29
137	Imbalance of excitatory/inhibitory synaptic protein expression in iPSC-derived neurons from FOXG1+/â^' patients and in foxg1+/â^' mice. European Journal of Human Genetics, 2016, 24, 871-880.	1.4	54
138	Altered expression of neuropeptides in FoxG1-null heterozygous mutant mice. European Journal of Human Genetics, 2016, 24, 252-257.	1.4	10
139	Recurrent duplications of 17q12 associated with variable phenotypes. American Journal of Medical Genetics, Part A, 2015, 167, 3038-3045.	0.7	22
140	Response to Phelan K. et al.: Letter to the Editor Regarding Disciglio et al: Interstitial 22q13 deletions not involving <i>SHANK3</i> gene: A new contiguous gene syndrome. American Journal of Medical Genetics, Part A, 2015, 167, 1681-1681.	0.7	2
141	Antiepileptic drugs in Rett Syndrome. European Journal of Paediatric Neurology, 2015, 19, 446-452.	0.7	13
142	Targeted Nextâ€Generation Sequencing Analysis of 1,000 Individuals with Intellectual Disability. Human Mutation, 2015, 36, 1197-1204.	1.1	161
143	Coffin–Siris and Nicolaides–Baraitser syndromes are a common well recognizable cause of intellectual disability. Brain and Development, 2015, 37, 527-536.	0.6	32
144	Evidence of digenic inheritance in Alport syndrome. Journal of Medical Genetics, 2015, 52, 163-174.	1.5	129

#	Article	IF	CITATIONS
145	Next generation sequencing in sporadic retinoblastoma patients reveals somatic mosaicism. European Journal of Human Genetics, 2015, 23, 1523-1530.	1.4	37
146	Alteration of serum lipid profile, SRB1 loss, and impaired Nrf2 activation in CDKL5 disorder. Free Radical Biology and Medicine, 2015, 86, 156-165.	1.3	19
147	The EuroBioBank Network: 10 years of hands-on experience of collaborative, transnational biobanking for rare diseases. European Journal of Human Genetics, 2015, 23, 1116-1123.	1.4	63
148	<i>FANCM</i> c.5791C>T nonsense mutation (rs144567652) induces exon skipping, affects DNA repair activity and is a familial breast cancer risk factor. Human Molecular Genetics, 2015, 24, 5345-5355.	1.4	91
149	A Potential Contributory Role for Ciliary Dysfunction in the 16p11.2 600 kb BP4-BP5 Pathology. American Journal of Human Genetics, 2015, 96, 784-796.	2.6	53
150	Sporadic hereditary motor and sensory neuropathies: Advances in the diagnosis using next generation sequencing technology. Journal of the Neurological Sciences, 2015, 359, 409-417.	0.3	3
151	Epilepsy in Rett syndrome—Lessons from the Rett networked database. Epilepsia, 2015, 56, 569-576.	2.6	47
152	Bone marrow failure and developmental delay caused by mutations in poly(A)-specific ribonuclease (<i>PARN</i>). Journal of Medical Genetics, 2015, 52, 738-748.	1.5	71
153	Dropped-head in recessive oculopharyngeal muscular dystrophy. Neuromuscular Disorders, 2015, 25, 869-872.	0.3	10
154	GluD1 is a common altered player in neuronal differentiation from both MECP2-mutated and CDKL5-mutated iPS cells. European Journal of Human Genetics, 2015, 23, 195-201.	1.4	65
155	Bone Marrow Failure and Developmental Delay Caused By Mutations in Poly(A)-Specific Ribonuclease. Blood, 2015, 126, 2404-2404.	0.6	11
156	Redox Imbalance and Morphological Changes in Skin Fibroblasts in Typical Rett Syndrome. Oxidative Medicine and Cellular Longevity, 2014, 2014, 1-10.	1.9	44
157	16p11.2 600 kb Duplications confer risk for typical and atypical Rolandic epilepsy. Human Molecular Genetics, 2014, 23, 6069-6080.	1.4	61
158	First Identification of a Triple Corneal Dystrophy Association: Keratoconus, Epithelial Basement Membrane Corneal Dystrophy and Fuchs' Endothelial Corneal Dystrophy. Case Reports in Ophthalmology, 2014, 5, 281-288.	0.3	24
159	Unbiased next generation sequencing analysis confirms the existence of autosomal dominant Alport syndrome in a relevant fraction of cases. Clinical Genetics, 2014, 86, 252-257.	1.0	121
160	9q31.1q31.3 deletion in two patients with similar clinical features: A newly recognized microdeletion syndrome?. American Journal of Medical Genetics, Part A, 2014, 164, 685-690.	0.7	9
161	Overlapping microdeletions involving 15q22.2 narrow the critical region for intellectual disability to NARG2 and RORA. European Journal of Medical Genetics, 2014, 57, 163-168.	0.7	11
162	Interstitial 22q13 deletions not involving SHANK3 gene: A new contiguous gene syndrome. American Journal of Medical Genetics, Part A, 2014, 164, 1666-1676.	0.7	49

#	Article	IF	CITATIONS
163	Capping of the N-terminus of PSD-95 by calmodulin triggers its postsynaptic release. EMBO Journal, 2014, 33, 1341-53.	3.5	64
164	Oligogenic germline mutations identified in early non-smokers lung adenocarcinoma patients. Lung Cancer, 2014, 85, 168-174.	0.9	30
165	Superselective ophthalmic artery infusion of melphalan for intraocular retinoblastoma: preliminary results from 140 treatments. Acta Ophthalmologica, 2013, 91, 335-342.	0.6	54
166	Telethon Network of Genetic Biobanks: a key service for diagnosis and research on rare diseases. Orphanet Journal of Rare Diseases, 2013, 8, 129.	1.2	39
167	Ambiguous external genitalia due to defect of 5-α-reductase in seven Iraqi patients: Prevalence of a novel mutation. Gene, 2013, 526, 490-493.	1.0	16
168	Exome sequencing overrides formal genetics: <i><scp>ASPM</scp></i> mutations in a case study of apparent Xâ€linked microcephalic intellectual deficit. Clinical Genetics, 2013, 83, 288-290.	1.0	9
169	The phenotype of Floating-Harbor syndrome: clinical characterization of 52 individuals with mutations in exon 34 of SRCAP. Orphanet Journal of Rare Diseases, 2013, 8, 63.	1.2	60
170	A comprehensive molecular study on Coffin–Siris and Nicolaides–Baraitser syndromes identifies a broad molecular and clinical spectrum converging on altered chromatin remodeling. Human Molecular Genetics, 2013, 22, 5121-5135.	1.4	190
171	Variant of Rett Syndrome and CDKL5 Gene: Clinical and Autonomic Description of 10 Cases. Neuropediatrics, 2013, 44, 237-238.	0.3	1
172	Prognostic Value of Glomerular Collagen IV Immunofluorescence Studies in Male Patients with X-Linked Alport Syndrome. Clinical Journal of the American Society of Nephrology: CJASN, 2013, 8, 749-755.	2.2	15
173	The role of surgical lung biopsy in the management of interstitial lung disease: experience from a single institution in the UK. Interactive Cardiovascular and Thoracic Surgery, 2013, 17, 253-257.	0.5	48
174	Dual copy number variants involving 16p11 and 6q22 in a case of childhood apraxia of speech and pervasive developmental disorder. European Journal of Human Genetics, 2013, 21, 361-365.	1.4	36
175	Revealing the Complexity of a Monogenic Disease: Rett Syndrome Exome Sequencing. PLoS ONE, 2013, 8, e56599.	1.1	54
176	Variant of Rett Syndrome and CDKL5 Gene: Clinical and Autonomic Description of 10 Cases. Neuropediatrics, 2012, 43, 037-043.	0.3	27
177	Reduced expression of <i>MECP2</i> affects cell commitment and maintenance in neurons by triggering senescence: new perspective for Rett syndrome. Molecular Biology of the Cell, 2012, 23, 1435-1445.	0.9	37
178	Advances in Alport syndrome diagnosis using next-generation sequencing. European Journal of Human Genetics, 2012, 20, 50-57.	1.4	76
179	Phosphatase and Tensin Homolog (PTEN) Gene Mutations and Autism: Literature Review and a Case Report of a Patient With Cowden Syndrome, Autistic Disorder, and Epilepsy. Journal of Child Neurology, 2012, 27, 392-397.	0.7	60
180	<i>Vav1</i> Haploinsufficiency in a Common Variable Immunodeficiency Patient with Defective T-Cell Function. International Journal of Immunopathology and Pharmacology, 2012, 25, 811-817.	1.0	18

#	Article	IF	CITATIONS
181	Corpus callosum abnormalities, intellectual disability, speech impairment, and autism in patients with haploinsufficiency of <i>ARID1B</i> . Clinical Genetics, 2012, 82, 248-255.	1.0	126
182	Expanding the phenotype associated with <i>FOXG1</i> mutations and in vivo FoxG1 chromatinâ€binding dynamics. Clinical Genetics, 2012, 82, 395-403.	1.0	25
183	Corrigendum to "MECP2 gene mutation analysis in the British and Italian Rett Syndrome patients: hot spot map of the most recurrent mutations and bioinformatic analysis of a new MECP2 conserved region―[Brain Dev 2001; 23: S246–50]. Brain and Development, 2012, 34, 891.	0.6	0
184	Xq28 duplications including MECP2 in five females: Expanding the phenotype toÂsevere mental retardation. European Journal of Medical Genetics, 2012, 55, 404-413.	0.7	42
185	A Unique Patient Presenting With Concomitant Klinefelter Syndrome, Alport Syndrome, and Craniopharyngioma. Journal of Andrology, 2012, 33, 1155-1159.	2.0	7
186	13q Deletion syndrome and retinoblastoma in identical dichorionic diamniotic monozygotic twins. European Journal of Ophthalmology, 2012, 22, 857-860.	0.7	4
187	Rett networked database: An integrated clinical and genetic network of rett syndrome databases. Human Mutation, 2012, 33, 1031-1036.	1.1	19
188	Periventricular heterotopia with white matter abnormalities associated with 6p25 deletion. American Journal of Medical Genetics, Part A, 2012, 158A, 1793-1797.	0.7	29
189	Epigenetic and Copy Number Variation Analysis in Retinoblastoma by MS-MLPA. Pathology and Oncology Research, 2012, 18, 703-712.	0.9	43
190	Retinoma and Retinoblastoma: Genomic Hybridisation. , 2012, , 93-102.		0
191	Mirror extreme BMI phenotypes associated with gene dosage at the chromosome 16p11.2 locus. Nature, 2011, 478, 97-102.	13.7	394
192	Alport syndrome and leiomyomatosis: the first deletion extending beyond COL4A6 intron 2. Pediatric Nephrology, 2011, 26, 717-724.	0.9	27
193	Mutation spectrum of MLL2 in a cohort of kabuki syndrome patients. Orphanet Journal of Rare Diseases, 2011, 6, 38.	1.2	79
194	Five patients with novel overlapping interstitial deletions in 8q22.2q22.3. American Journal of Medical Genetics, Part A, 2011, 155, 1857-1864.	0.7	23
195	Creatine transporter defect diagnosed by proton NMR spectroscopy in males with intellectual disability. American Journal of Medical Genetics, Part A, 2011, 155, 2446-2452.	0.7	19
196	iPS cells to model CDKL5-related disorders. European Journal of Human Genetics, 2011, 19, 1246-1255.	1.4	80
197	Association between primary open-angle glaucoma (POAG) and WDR36 sequence variance in Italian families affected by POAG. British Journal of Ophthalmology, 2011, 95, 624-626.	2.1	15
198	p53 Arg72Pro and MDM2 309 SNPs in hereditary retinoblastoma. Journal of Human Genetics, 2011, 56, 685-686.	1.1	12

#	Article	IF	CITATIONS
199	Analysis of Hungarian patients with Rett syndrome phenotype for MECP2, CDKL5 and FOXG1 gene mutations. Journal of Human Genetics, 2011, 56, 183-187.	1.1	15
200	Investigation of modifier genes within copy number variations in Rett syndrome. Journal of Human Genetics, 2011, 56, 508-515.	1.1	25
201	The first Italian family with tibial muscular dystrophy caused by a novel titin mutation. Journal of Neurology, 2010, 257, 575-579.	1.8	44
202	Early-onset seizure variant of Rett syndrome: Definition of the clinical diagnostic criteria. Brain and Development, 2010, 32, 17-24.	0.6	62
203	Leukoencephalopathy in 21-β hydroxylase deficiency: Report of a family. Brain and Development, 2010, 32, 421-424.	0.6	13
204	Intellectual disability, midface hypoplasia, facial hypotonia, and alport syndrome are associated with a deletion in Xq22.3. American Journal of Medical Genetics, Part A, 2010, 152A, 713-717.	0.7	19
205	Syndromic mental retardation with thrombocytopenia due to 21q22.11q22.12 deletion: Report of three patients. American Journal of Medical Genetics, Part A, 2010, 152A, 1711-1717.	0.7	23
206	Rett syndrome: Revised diagnostic criteria and nomenclature. Annals of Neurology, 2010, 68, 944-950.	2.8	1,045
207	High frequency of COH1 intragenic deletions and duplications detected by MLPA in patients with Cohen syndrome. European Journal of Human Genetics, 2010, 18, 1133-1140.	1.4	31
208	Partial silencing of methyl cytosine protein binding 2 (<i>MECP2</i>) in mesenchymal stem cells induces senescence with an increase in damaged DNA. FASEB Journal, 2010, 24, 1593-1603.	0.2	37
209	Unmasking of a Recessive SCARF2 Mutation by a 22q11.12 de novo Deletion in a Patient with Van den Ende-Gupta Syndrome. Molecular Syndromology, 2010, 1, 239-245.	0.3	32
210	Novel FOXG1 mutations associated with the congenital variant of Rett syndrome. Journal of Medical Genetics, 2010, 47, 49-53.	1.5	106
211	3.2 Mb microdeletion in chromosome 7 bands q22.2–q22.3 associated with overgrowth and delayed bone age. European Journal of Medical Genetics, 2010, 53, 168-170.	0.7	16
212	Is Complement Alternative Pathway Disregulation Involved in Veno-Occlusive Disease of the Liver?. Biology of Blood and Marrow Transplantation, 2010, 16, 1749-1750.	2.0	3
213	EEG features and epilepsy in MECP2-mutated patients with the Zappella variant of Rett syndrome. Clinical Neurophysiology, 2010, 121, 652-657.	0.7	13
214	Epilepsy in Rett syndrome: Clinical and genetic features. Epilepsy and Behavior, 2010, 19, 296-300.	0.9	68
215	13qdel syndrome and corpus callosum agenesis in two identical twins. Acta Ophthalmologica, 2010, 88, 0-0.	0.6	0
216	Autosomal dominant Alport syndrome: molecular analysis of the COL4A4 gene and clinical outcome. Nephrology Dialysis Transplantation, 2009, 24, 1464-1471.	0.4	81

#	Article	IF	CITATIONS
217	Diagnostic criteria for the Zappella variant of Rett syndrome (the preserved speech variant). Brain and Development, 2009, 31, 208-216.	0.6	83
218	Mowat–Wilson syndrome: Facial phenotype changing with age: Study of 19 Italian patients and review of the literature. American Journal of Medical Genetics, Part A, 2009, 149A, 417-426.	0.7	97
219	Variation in novel exons (RACEfrags) of theMECP2gene in Rett syndrome patients and controls. Human Mutation, 2009, 30, E866-E879.	1.1	1
220	Array comparative genomic hybridization in retinoma and retinoblastoma tissues. Cancer Science, 2009, 100, 465-471.	1.7	38
221	Refinement of the 12q14 microdeletion syndrome: primordial dwarfism and developmental delay with or without osteopoikilosis. European Journal of Human Genetics, 2009, 17, 1141-1147.	1.4	33
222	14q12 Microdeletion syndrome and congenital variant of Rett syndrome. European Journal of Medical Genetics, 2009, 52, 148-152.	0.7	40
223	A 9.3Mb microdeletion of 3q27.3q29 associated with psychomotor and growth delay, tricuspid valve dysplasia and bifid thumb. European Journal of Medical Genetics, 2009, 52, 131-133.	0.7	18
224	The XLMR gene ACSL4 plays a role in dendritic spine architecture. Neuroscience, 2009, 159, 657-669.	1.1	34
225	Is HSD17B1 a new sex reversal gene in human?. Molecular and Cellular Endocrinology, 2009, 313, 70-70.	1.6	Ο
226	A clinical, genetic, and biochemical characterization of <i>SPG7</i> mutations in a large cohort of patients with hereditary spastic paraplegia. Human Mutation, 2008, 29, 522-531.	1.1	85
227	A case report: Bone marrow mesenchymal stem cells from a rett syndrome patient are prone to senescence and show a lower degree of apoptosis. Journal of Cellular Biochemistry, 2008, 103, 1877-1885.	1.2	27
228	Delineation of the phenotype associated with 7q36.1q36.2 deletion: Long QT syndrome, renal hypoplasia and mental retardation. American Journal of Medical Genetics, Part A, 2008, 146A, 1195-1199.	0.7	22
229	Cohen syndrome resulting from a novel large intragenic <i>COH1</i> deletion segregating in an isolated Greek island population. American Journal of Medical Genetics, Part A, 2008, 146A, 2221-2226.	0.7	26
230	A 3 Mb deletion in 14q12 causes severe mental retardation, mild facial dysmorphisms and Rettâ€like features. American Journal of Medical Genetics, Part A, 2008, 146A, 1994-1998.	0.7	56
231	Epilepsy and electroencephalographic anomalies in chromosome 2 aberrations. Epilepsy Research, 2008, 79, 63-70.	0.8	13
232	FOXG1 Is Responsible for the Congenital Variant of Rett Syndrome. American Journal of Human Genetics, 2008, 83, 89-93.	2.6	366
233	Three new patients with dup(17)(p11.2p11.2) without autism. Clinical Genetics, 2008, 73, 294-296.	1.0	7
234	Private inherited microdeletion/microduplications: Implications in clinical practice. European Journal of Medical Genetics, 2008, 51, 409-416.	0.7	59

#	Article	IF	CITATIONS
235	Genomic differences between retinoma and retinoblastoma. Acta OncolÃ ³ gica, 2008, 47, 1483-1492.	0.8	41
236	Mutations in <i>FN1</i> cause glomerulopathy with fibronectin deposits. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2538-2543.	3.3	125
237	Disruption of the IQSEC2 transcript in a female with X;autosome translocation t(X;20)(p11.2;q11.2) and a phenotype resembling X-linked infantile spasms (ISSX) syndrome. Molecular Medicine Reports, 2008, , .	1.1	8
238	Expanding the phenotype of 22q11 deletion syndrome: the MURCS association. Clinical Dysmorphology, 2008, 17, 13-17.	0.1	17
239	2q24–q31 Deletion: Report of a case and review of the literature. European Journal of Medical Genetics, 2007, 50, 21-32.	0.7	49
240	A 2.6Mb deletion of 6q24.3–25.1 in a patient with growth failure, cardiac septal defect, thin upperlip and asymmetric dysmorphic ears. European Journal of Medical Genetics, 2007, 50, 315-321.	0.7	15
241	RSK2 enzymatic assay as a second level diagnostic tool in Coffin-Lowry syndrome. Clinica Chimica Acta, 2007, 384, 35-40.	0.5	8
242	Clinical and molecular characterization of a patient with a 2q31.2-32.3 deletion identified by array-CGH. American Journal of Medical Genetics, Part A, 2007, 143A, 858-865.	0.7	37
243	<i>MECP2</i> deletions and genotype–phenotype correlation in Rett syndrome. American Journal of Medical Genetics, Part A, 2007, 143A, 2775-2784.	0.7	45
244	The Italian XLMR bank: a clinical and molecular database. Human Mutation, 2007, 28, 13-18.	1.1	2
245	Italian Rett database and biobank. Human Mutation, 2007, 28, 329-335.	1.1	27
246	Deciphering the underlying genetic and epigenetic events leading to gastric carcinogenesis. Journal of Cellular Physiology, 2007, 211, 287-295.	2.0	95
247	Seizures and electroencephalographic findings in CDKL5 mutations: Case report and review. Brain and Development, 2007, 29, 239-242.	0.6	43
248	Frequency of the LRRK2 G2019S mutation in Italian patients affected by Parkinson's disease. Journal of Human Genetics, 2007, 52, 201-204.	1.1	12
249	Retinoblastoma and mental retardation microdeletion syndrome: clinical characterization and molecular dissection using array CGH. Journal of Human Genetics, 2007, 52, 535-542.	1.1	19
250	Clinical and molecular characterization of Italian patients affected by Cohen syndrome. Journal of Human Genetics, 2007, 52, 1011-1017.	1.1	25
251	Blepharophimosis, Ptosis, and Epicanthus Inversus Syndrome: Clinical and Molecular Analysis of a Case. Journal of AAPOS, 2006, 10, 279-280.	0.2	11
252	Optineurin gene is not involved in the common high-tension form of primary open-angle glaucoma. Graefe's Archive for Clinical and Experimental Ophthalmology, 2006, 244, 1077-1082.	1.0	12

#	Article	IF	CITATIONS
253	Mutational screening of the RB1 gene in Italian patients with retinoblastoma reveals 11 novel mutations. Journal of Human Genetics, 2006, 51, 209-216.	1.1	29
254	Autosomal recessive Alport syndrome: an in-depth clinical and molecular analysis of five families. Nephrology Dialysis Transplantation, 2006, 21, 665-671.	0.4	40
255	Germline mosaicism in Rett syndrome identified by prenatal diagnosis. Clinical Genetics, 2005, 67, 258-260.	1.0	32
256	Is Rett syndrome a loss-of-imprinting disorder?. Nature Genetics, 2005, 37, 10-11.	9.4	14
257	Non-syndromic X-linked mental retardation: From a molecular to a clinical point of view. Journal of Cellular Physiology, 2005, 204, 8-20.	2.0	36
258	Should a syndrome be called by its correct name? The example of the preserved speech variant of Rett syndrome. European Journal of Pediatrics, 2005, 164, 710-710.	1.3	4
259	CDKL5/STK9 is mutated in Rett syndrome variant with infantile spasms. Journal of Medical Genetics, 2005, 42, 103-107.	1.5	206
260	CDKL5 belongs to the same molecular pathway of MeCP2 and it is responsible for the early-onset seizure variant of Rett syndrome. Human Molecular Genetics, 2005, 14, 1935-1946.	1.4	279
261	Thin glomerular basement membrane disease: clinical significance of a morphological diagnosisa collaborative study of the Italian Renal Immunopathology Group. Nephrology Dialysis Transplantation, 2005, 20, 545-551.	0.4	26
262	Genetics and mechanisms of disease in Rett syndrome. Drug Discovery Today Disease Mechanisms, 2005, 2, 419-425.	0.8	3
263	Adult-Onset Primary Glaucoma and Molecular Genetics: A Review. European Journal of Ophthalmology, 2004, 14, 220-225.	0.7	8
264	Revised nomenclature for the mammalian long-chain acyl-CoA synthetase gene family. Journal of Lipid Research, 2004, 45, 1958-1961.	2.0	142
265	Mitochondrial Abnormalities in Genetically Assessed Oculopharyngeal Muscular Dystrophy. European Neurology, 2004, 51, 144-147.	0.6	14
266	Autosomal-dominant Alport syndrome: Natural history of a disease due to COL4A3 or COL4A4 gene. Kidney International, 2004, 65, 1598-1603.	2.6	124
267	Three Rett patients with both MECP2 mutation and 15q11–13 rearrangements. European Journal of Human Genetics, 2004, 12, 682-685.	1.4	11
268	Real-time quantitative PCR as a routine method for screening large rearrangements in Rett syndrome: Report of one case of MECP2 deletion and one case of MECP2 duplication. Human Mutation, 2004, 24, 172-177.	1.1	96
269	Rett syndrome: the complex nature of a monogenic disease. Journal of Molecular Medicine, 2003, 81, 346-354.	1.7	80
270	Study ofMECP2 gene in Rett syndrome variants and autistic girls. American Journal of Medical Genetics Part A, 2003, 119B, 102-107.	2.4	67

#	Article	IF	CITATIONS
271	Neurological presentation of Ehlers-Danlos syndrome type IV in a family with parental mosaicism. Clinical Genetics, 2003, 63, 510-515.	1.0	27
272	Chromosome 2 deletion encompassing the MAP2 gene in a patient with autism and Rett-like features. Clinical Genetics, 2003, 64, 497-501.	1.0	48
273	Confocal Microscopy of the Skin in the Diagnosis of X-Linked Alport Syndrome. Journal of Investigative Dermatology, 2003, 121, 208-211.	0.3	12
274	Epidermal basement membrane α5(IV) expression in females with Alport syndrome and severity of renal disease. Kidney International, 2003, 64, 1787-1791.	2.6	31
275	Otosclerosis: exclusion of linkage to the OTSC1 and OTSC2 loci in four Italian families: Otoesclerosis: exclusión de enlaces entre los loci OTSC1 y OTSC2 en cuatro familias italianas. International Journal of Audiology, 2003, 42, 475-480.	0.9	5
276	A third MRX family (MRX68) is the result of mutation in the long chain fatty acid-CoA ligase 4 (FACL4) gene: proposal of a rapid enzymatic assay for screening mentally retarded patients. Journal of Medical Genetics, 2003, 40, 11-17.	1.5	42
277	Mild brachydactyly type A1 maps to chromosome 2q35-q36 and is caused by a novel IHH mutation in a three generation family. Journal of Medical Genetics, 2003, 40, 132-135.	1.5	28
278	X-Linked Alport Syndrome: Natural History and Genotype-Phenotype Correlations in Girls and Women Belonging to 195 Families: A "European Community Alport Syndrome Concerted Action―Study. Journal of the American Society of Nephrology: JASN, 2003, 14, 2603-2610.	3.0	394
279	Title is missing!. Medicine (United States), 2003, 82, 203-215.	0.4	30
280	MYH9-Related Disease. Medicine (United States), 2003, 82, 203-215.	0.4	255
281	Mutations in the Myocilin Gene in Families With Primary Open-angle Glaucoma and Juvenile Open-angle Glaucoma. JAMA Ophthalmology, 2003, 121, 1034.	2.6	48
282	Alport syndrome and mental retardation: clinical and genetic dissection of the contiguous gene deletion syndrome in Xq22.3 (ATS-MR). Journal of Medical Genetics, 2002, 39, 359-365.	1.5	23
283	Epstein syndrome: another renal disorder with mutations in the nonmuscle myosin heavy chainÂ9 gene. Human Genetics, 2002, 110, 182-186.	1.8	45
284	COL4A3/COL4A4 mutations: From familial hematuria to autosomal-dominant or recessive Alport syndrome. Kidney International, 2002, 61, 1947-1956.	2.6	187
285	FACL4, encoding fatty acid-CoA ligase 4, is mutated in nonspecific X-linked mental retardation. Nature Genetics, 2002, 30, 436-440.	9.4	135
286	Optic disc drusen, angioid streaks, and mottled fundus in various combinations in a Sicilian family. Graefe's Archive for Clinical and Experimental Ophthalmology, 2002, 240, 771-776.	1.0	6
287	MECP2 gene mutation analysis in the British and Italian Rett Syndrome patients: hot spot map of the most recurrent mutations and bioinformatic analysis of a new MECP2 conserved region. Brain and Development, 2001, 23, S246-S250.	0.6	25
288	Mutation analysis of the MECP2 gene in British and Italian Rett syndrome females. Journal of Molecular Medicine, 2001, 78, 648-655.	1.7	51

#	Article	IF	CITATIONS
289	Multiple endocrine neoplasia type 2 syndromes may be associated with renal malformations. Journal of Internal Medicine, 2001, 250, 37-42.	2.7	26
290	PAX6mutation in a family with aniridia, congenital ptosis, and mental retardation. Clinical Genetics, 2001, 60, 151-154.	1.0	52
291	Pseudoxanthoma elasticum: Point mutations in the ABCC6 gene and a large deletion including also ABCC1 and MYH11. Human Mutation, 2001, 18, 85-85.	1.1	36
292	Preserved speech variants of the Rett syndrome: Molecular and clinical analysis. American Journal of Medical Genetics Part A, 2001, 104, 14-22.	2.4	117
293	Preserved speech variant is allelic of classic Rett syndrome. European Journal of Human Genetics, 2000, 8, 325-330.	1.4	116
294	Mosaicism in Alport syndrome and genetic counselling. Journal of Medical Genetics, 2000, 37, 717-719.	1.5	16
295	Identification and characterization of mouse orthologs of the AMMECR1 and FACL4 genes deleted in AMME syndrome: orthology of Xq22.3 and MmuXF1–F3. Cytogenetic and Genome Research, 2000, 88, 259-263.	0.6	9
296	Dot-and-fleck retinopathy in Alport syndrome caused by a novel mutation in the COL4A5 gene. American Journal of Ophthalmology, 2000, 130, 130-131.	1.7	9
297	A Mutation in the Rett Syndrome Gene, MECP2, Causes X-Linked Mental Retardation and Progressive Spasticity in Males. American Journal of Human Genetics, 2000, 67, 982-985.	2.6	213
298	X-linked Alport Syndrome. Journal of the American Society of Nephrology: JASN, 2000, 11, 649-657.	3.0	455
299	Autosomal dominant aplasia cutis congenita: report of a large Italian family and no hint for candidate chromosomal regions. Archives of Dermatological Research, 1999, 291, 637-642.	1.1	13
300	Intracellular levels of the LIS1 protein correlate with clinical and neuroradiological findings in patients with classical lissencephaly. Annals of Neurology, 1999, 45, 154-161.	2.8	50
301	Inheritance of a 38-kb fragment in apparently sporadic facioscapulohumeral muscular dystrophy. Muscle and Nerve, 1999, 22, 1437-1441.	1.0	21
302	LINE-1 Elements at the Sites of Molecular Rearrangements in Alport Syndrome–Diffuse Leiomyomatosis. American Journal of Human Genetics, 1999, 64, 62-69.	2.6	106
303	Identification and Characterization of a Highly Conserved Protein Absent in the Alport Syndrome (A), Mental Retardation (M), Midface Hypoplasia (M), and Elliptocytosis (E) Contiguous Gene Deletion Syndrome (AMME). Genomics, 1999, 55, 335-340.	1.3	44
304	KCNE1-like Gene Is Deleted in AMME Contiguous Gene Syndrome: Identification and Characterization of the Human and Mouse Homologs. Genomics, 1999, 60, 251-257.	1.3	72
305	Evidence for Genetic Heterogeneity in Benign Familial Hematuria. American Journal of Nephrology, 1999, 19, 464-467.	1.4	45
306	Intracellular levels of the LIS1 protein correlate with clinical and neuroradiological findings in		5

patients with classical lissencephaly. , 1999, 45, 154.

#	Article	IF	CITATIONS
307	Missense mutations in the COL4A5 gene in patients with X-linked alport syndrome. Human Mutation, 1998, 11, S106-S109.	1.1	3
308	FACL4, a New Gene Encoding Long-Chain Acyl-CoA Synthetase 4, Is Deleted in a Family with Alport Syndrome, Elliptocytosis, and Mental Retardation. Genomics, 1998, 47, 350-358.	1.3	114
309	Alport syndrome, mental retardation, midface hypoplasia, and elliptocytosis: a new X linked contiguous gene deletion syndrome?. Journal of Medical Genetics, 1998, 35, 273-278.	1.5	57
310	CAG Repeat Expansion in an Italian Family with Spinocerebellar Ataxia Type 2 (SCA2): A Clinical and Genetic Study. European Neurology, 1998, 40, 164-168.	0.6	31
311	Ultrastructural and immunohistochemical findings in Alport's syndrome: a study of 108 patients from 97 Italian families with particular emphasis on COL4A5 gene mutation correlations Journal of the American Society of Nephrology: JASN, 1998, 9, 1023-1031.	3.0	64
312	Alport syndrome - is there a genotype-phenotype relationship?. Nephrology Dialysis Transplantation, 1997, 12, 1551-1553.	0.4	9
313	Molecular Diagnosis of Alport Syndrome: The Experience in Siena. , 1997, 122, 132-133.		0
314	Ultrastructural immunocytochemistry of collagenous and non-collagenous proteins in fast-frozen, freeze-substituted, and low-temperature-embedded renal tissue in Alport syndrome. , 1997, 182, 465-474.		4
315	New Approaches to the DNA Diagnosis of Alport Syndrome. Contributions To Nephrology, 1996, 117, 183-197.	1.1	1
316	Unequal homologous crossing over resulting in duplication of 36 base pairs within Exon 47 of the COL4A5 gene in a family with Alport syndrome. , 1996, 8, 265-269.		6
317	X-linked Alport syndrome: an SSCP-based mutation survey over all 51 exons of the COL4A5 gene. American Journal of Human Genetics, 1996, 58, 1192-204.	2.6	81
318	Renal Transplantation from Living Donor Parents in Two Brothers with Alport Syndrome. Nephron, 1995, 70, 106-109.	0.9	12
319	Major COL4A5 gene rearrangements in patients with juvenile type Alport syndrome. American Journal of Medical Genetics Part A, 1995, 59, 380-385.	2.4	23
320	Cloning of the gene for ocular albinism type 1 from the distal short arm of the X chromosome. Nature Genetics, 1995, 10, 13-19.	9.4	190
321	Cloning of a human homologue of the Xenopus Iaevis APX gene from the ocular albinism type 1 critical region. Human Molecular Genetics, 1995, 4, 373-382.	1.4	34
322	Analysis of the OA1 gene reveals mutations in only one-third of patients with X-linked ocular albinism. Human Molecular Genetics, 1995, 4, 2319-2325.	1.4	80
323	A novel missense mutation in exon 3 of the COL4A5 gene associated with lateâ€onset Alport syndrome. Clinical Genetics, 1995, 48, 261-263.	1.0	8
324	A Bg/II polymorphism in the COL4A6 gene. Human Molecular Genetics, 1994, 3, 1914-1914.	1.4	1

#	Article	IF	CITATIONS
325	Single base pair deletions in exons 39 and 42 of the COL4A5 gene in Alport syndrome. Human Molecular Genetics, 1994, 3, 201-202.	1.4	18
326	A novel frameshift deletion in type IV collagen α5 gene in a juvenile-type Alport syndrome patient: An adenine deletion (2940/2943 del A) in exon 34 of COL4A5. Human Mutation, 1994, 3, 386-390.	1.1	18
327	Deletion spanning the 5′ ends of both the COL4A5 and COL4A6 genes in a patient with Alport's syndrome and leiomyomatosis. Human Mutation, 1994, 4, 195-198.	1.1	24
328	Variability of Clinical Phenotype in a Large Alport Family with Gly 1143 Ser Change of Collagen α5(IV)-Chain. Nephron, 1994, 67, 444-449.	0.9	26
329	De-novo COL4A5 gene mutations in Alport's syndrome. Nephrology Dialysis Transplantation, 1994, 9, 1408-11.	0.4	5
330	Small frameshift deletions within the COL4A5 gene in juvenile-onset Alport syndrome. Human Genetics, 1993, 92, 417-420.	1.8	21
331	Alport Syndrome with Type I Membranoproliferative Glomerulonephritis. Nephron, 1993, 65, 479-480.	0.9	2
332	Epsteinâ€barr virus and gastric cancer: Data and unanswered questions. International Journal of Cancer, 1993, 53, 898-901.	2.3	58
333	De novo mutation in the COL4A5 gene converting glycine 325 to glutamic acid in Alport syndrome. Human Molecular Genetics, 1992, 1, 127-129.	1.4	47
334	Alport syndrome caused by a 5 \hat{a} \in 2 deletion within the COL4A5 gene. Human Genetics, 1992, 89, 120-121.	1.8	32
335	Molecular characterization of the P and I variants of $\hat{I}\pm 1$ -antitrypsin. International Journal of Clinical and Laboratory Research, 1992, 22, 119-121.	1.0	10
336	Shorter Androgen Receptor PolyQ Alleles Protect Against Life-Threatening COVID-19 Disease in Males. SSRN Electronic Journal, 0, , .	0.4	2
337	COVID-19: a challenge and an opportunity. European Journal of Human Genetics, 0, , .	1.4	0