Catalina HernÃ;ndez SÃ;nchez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2800132/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insulin receptor activation by proinsulin preserves synapses and vision in retinitis pigmentosa. Cell Death and Disease, 2022, 13, 383.	6.3	4
2	Possible Role of Insulin-Degrading Enzyme in the Physiopathology of Retinitis Pigmentosa. Cells, 2022, 11, 1621.	4.1	1
3	Tlr2 Gene Deletion Delays Retinal Degeneration in Two Genetically Distinct Mouse Models of Retinitis Pigmentosa. International Journal of Molecular Sciences, 2021, 22, 7815.	4.1	9
4	GSK-3 Inhibitors: From theÂBrain to theÂRetina and Back Again. Advances in Experimental Medicine and Biology, 2019, 1185, 437-441.	1.6	6
5	Premature aging in behavior and immune functions in tyrosine hydroxylase haploinsufficient female mice. A longitudinal study. Brain, Behavior, and Immunity, 2018, 69, 440-455.	4.1	18
6	Modulation of GSK-3 provides cellular and functional neuroprotection in the rd10 mouse model of retinitis pigmentosa. Molecular Neurodegeneration, 2018, 13, 19.	10.8	28
7	The Prohormone Proinsulin as a Neuroprotective Factor: Past History and Future Prospects. Frontiers in Molecular Neuroscience, 2018, 11, 426.	2.9	5
8	Increased FGF21 in brown adipose tissue of tyrosine hydroxylase heterozygous mice: implications for cold adaptation. Journal of Lipid Research, 2018, 59, 2308-2320.	4.2	5
9	CHAPTER 4. CNS Targets for the Treatment of Retinal Dystrophies: A Win–Win Strategy. RSC Drug Discovery Series, 2018, , 61-75.	0.3	2
10	Small molecules targeting glycogen synthase kinase 3 as potential drug candidates for the treatment of retinitis pigmentosa. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32, 522-526.	5.2	19
11	Proinsulin protects against age-related cognitive loss through anti-inflammatory convergent pathways. Neuropharmacology, 2017, 123, 221-232.	4.1	14
12	p75NTR antagonists attenuate photoreceptor cell loss in murine models of retinitis pigmentosa. Cell Death and Disease, 2017, 8, e2922-e2922.	6.3	23
13	Tyrosine hydroxylase haploinsufficiency prevents age-associated arterial pressure elevation and increases half–life in mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 113-120.	3.8	3
14	Intravitreal Injection of Proinsulin-Loaded Microspheres Delays Photoreceptor Cell Death and Vision Loss in the <i>rd10</i> Mouse Model of Retinitis Pigmentosa. , 2016, 57, 3610.		24
15	Non-neural tyrosine hydroxylase, via modulation of endocrine pancreatic precursors, is required for normal development of beta cells in the mouse pancreas. Diabetologia, 2014, 57, 2339-2347.	6.3	31
16	Alternative splicing variants of proinsulin mRNA and the effects of excess proinsulin on cardiac morphogenesis. FEBS Letters, 2013, 587, 2272-2277.	2.8	4
17	A comparative study of age-related hearing loss in wild type and insulin-like growth factor I deficient mice. Frontiers in Neuroanatomy, 2010, 4, 27.	1.7	57
18	Tyrosine hydroxylase is expressed during early heart development and is required for cardiac chamber formation. Cardiovascular Research, 2010, 88, 111-120.	3.8	20

#	Article	IF	CITATIONS
19	Evolution of the Insulin Receptor Family and Receptor Isoform Expression in Vertebrates. Molecular Biology and Evolution, 2008, 25, 1043-1053.	8.9	90
20	Proinsulin in development: new roles for an ancient prohormone. Diabetologia, 2006, 49, 1142-1150.	6.3	66
21	The regulated expression of chimeric tyrosine hydroxylase-insulin transcripts during early development. Nucleic Acids Research, 2006, 34, 3455-3464.	14.5	9
22	Developmental regulation of a proinsulin messenger RNA generated by intron retention. EMBO Reports, 2005, 6, 1182-1187.	4.5	44
23	Balance of pro-apoptotic transforming growth factor-β and anti-apoptotic insulin effects in the control of cell death in the postnatal mouse retina. European Journal of Neuroscience, 2005, 22, 28-38.	2.6	23
24	Proinsulin: Much More than a Hormone Precursor in Development. Reviews in Endocrine and Metabolic Disorders, 2005, 6, 211-216.	5.7	6
25	Protection against hypoxic–ischemic injury in transgenic mice overexpressing Kir6.2 channel pore in forebrain. Molecular and Cellular Neurosciences, 2004, 25, 585-593.	2.2	44
26	Upstream AUGs in embryonic proinsulin mRNA control its low translation level. EMBO Journal, 2003, 22, 5582-5592.	7.8	47
27	Unprocessed Proinsulin Promotes Cell Survival During Neurulation in the Chick Embryo. Diabetes, 2002, 51, 770-777.	0.6	36
28	Functional inactivation of the IGF-I and insulin receptors in skeletal muscle causes type 2 diabetes. Genes and Development, 2001, 15, 1926-1934.	5.9	323
29	Mice transgenically overexpressing sulfonylurea receptor 1 in forebrain resist seizure induction and excitotoxic neuron death. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 3549-3554.	7.1	92
30	Characterization of the Mouse Sulfonylurea Receptor 1 Promoter and Its Regulation. Journal of Biological Chemistry, 1999, 274, 18261-18270.	3.4	33
31	Heat shock proteins in retinal neurogenesis: identification of the PM1 antigen as the chick Hsc70 and its expression in comparison to that of other chaperones. European Journal of Neuroscience, 1998, 10, 3237-3245.	2.6	18
32	Differential Regulation of Insulin-like Growth Factor-I (IGF-I) Receptor Gene Expression by IGF-I and Basic Fibroblastic Growth Factor. Journal of Biological Chemistry, 1997, 272, 4663-4670.	3.4	77
33	Developmental and Tissue-Specific Sulfonylurea Receptor Gene Expression. Endocrinology, 1997, 138, 705-711.	2.8	7
34	Autocrine/paracrine role of insulin-related growth factors in neurogenesis: local expression and effects on cell proliferation and differentiation in retina Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 9834-9838.	7.1	101
35	The Role of the Tyrosine Kinase Domain of the Insulin-like Growth Factor-I Receptor in Intracellular Signaling, Cellular Proliferation, and Tumorigenesis. Journal of Biological Chemistry, 1995, 270, 29176-29181.	3.4	92
36	The regulation of IGF-I receptor gene expression. International Journal of Biochemistry and Cell Biology, 1995, 27, 987-994.	2.8	52

#	Article	IF	CITATIONS
37	Heterogeneity Among Neuroepithelial Cells in the Chick Retina Revealed by Immunostaining with Monoclonal Antibody PM1. European Journal of Neuroscience, 1994, 6, 105-114.	2.6	26
38	Insulin and Insulin-like Growth Factor System Components Gene Expression in the Chicken Retina From Early Neurogenesis Until Late Development and Their Effect on Neuroepithelial Cells. European Journal of Neuroscience, 1994, 6, 1801-1810.	2.6	79