Anubha Mahajan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/280013/publications.pdf

Version: 2024-02-01

177 papers

34,963 citations

71 h-index 167 g-index

220 all docs

220 docs citations

times ranked

220

39520 citing authors

#	Article	IF	CITATIONS
1	Genetic studies of body mass index yield new insights for obesity biology. Nature, 2015, 518, 197-206.	27.8	3,823
2	A reference panel of 64,976 haplotypes for genotype imputation. Nature Genetics, 2016, 48, 1279-1283.	21.4	2,421
3	Defining the role of common variation in the genomic and biological architecture of adult human height. Nature Genetics, 2014, 46, 1173-1186.	21.4	1,818
4	Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nature Genetics, 2012, 44, 981-990.	21.4	1,748
5	Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nature Genetics, 2018, 50, 1505-1513.	21.4	1,331
6	New genetic loci link adipose and insulin biology to body fat distribution. Nature, 2015, 518, 187-196.	27.8	1,328
7	Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nature Genetics, 2014, 46, 234-244.	21.4	959
8	The genetic architecture of type 2 diabetes. Nature, 2016, 536, 41-47.	27.8	952
9	Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nature Genetics, 2018, 50, 1412-1425.	21.4	924
10	Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nature Genetics, 2019, 51, 600-605.	21.4	854
11	Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nature Genetics, 2012, 44, 991-1005.	21.4	746
12	An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans. Diabetes, 2017, 66, 2888-2902.	0.6	615
13	Multi-ethnic genome-wide association study for atrial fibrillation. Nature Genetics, 2018, 50, 1225-1233.	21.4	552
14	A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nature Genetics, 2019, 51, 957-972.	21.4	549
15	Rare and low-frequency coding variants alter human adult height. Nature, 2017, 542, 186-190.	27.8	544
16	Exome-wide association study of plasma lipids in >300,000 individuals. Nature Genetics, 2017, 49, 1758-1766.	21.4	470
17	Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure. Nature Communications, 2020, 11 , 163 .	12.8	466
18	Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nature Genetics, 2014, 46, 357-363.	21.4	428

#	Article	IF	CITATIONS
19	Coding Variation in (i>ANGPTL4, (i> (i>LPL, (i> and (i>SVEP1 (i> and the Risk of Coronary Disease. New England Journal of Medicine, 2016, 374, 1134-1144.	27.0	427
20	Genome-wide associations for birth weight and correlations with adult disease. Nature, 2016, 538, 248-252.	27.8	406
21	Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors. Nature Genetics, 2019, 51, 804-814.	21.4	402
22	Using human genetics to understand the disease impacts of testosterone in men and women. Nature Medicine, 2020, 26, 252-258.	30.7	384
23	Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nature Genetics, 2015, 47, 1415-1425.	21.4	365
24	Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes. Nature Genetics, 2018, 50, 559-571.	21.4	356
25	The power of genetic diversity in genome-wide association studies of lipids. Nature, 2021, 600, 675-679.	27.8	353
26	New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries. Nature Genetics, 2019, 51, 481-493.	21.4	350
27	Impact of common genetic determinants of Hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations: A transethnic genome-wide meta-analysis. PLoS Medicine, 2017, 14, e1002383.	8.4	341
28	Large-scale genome-wide meta-analysis of polycystic ovary syndrome suggests shared genetic architecture for different diagnosis criteria. PLoS Genetics, 2018, 14, e1007813.	3.5	341
29	The trans-ancestral genomic architecture of glycemic traits. Nature Genetics, 2021, 53, 840-860.	21.4	341
30	The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale Genome-Wide Interaction Study. PLoS Genetics, 2015, 11, e1005378.	3.5	331
31	Genome Analyses of >200,000 Individuals Identify 58 Loci for Chronic Inflammation and Highlight Pathways that Link Inflammation and Complex Disorders. American Journal of Human Genetics, 2018, 103, 691-706.	6.2	326
32	The impact of low-frequency and rare variants on lipid levels. Nature Genetics, 2015, 47, 589-597.	21.4	310
33	PCSK9 genetic variants and risk of type 2 diabetes: a mendelian randomisation study. Lancet Diabetes and Endocrinology,the, 2017, 5, 97-105.	11.4	298
34	New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism. Nature Genetics, 2013, 45, 76-82.	21.4	293
35	Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity. Nature Genetics, 2018, 50, 26-41.	21.4	286
36	Identification of type 2 diabetes loci in 433,540 East Asian individuals. Nature, 2020, 582, 240-245.	27.8	282

3

#	Article	IF	Citations
37	Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index. Human Molecular Genetics, 2016, 25, 389-403.	2.9	275
38	Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nature Genetics, 2016, 48, 1151-1161.	21.4	261
39	Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels. Nature Genetics, 2019, 51, 1459-1474.	21.4	251
40	Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. Nature Genetics, 2022, 54, 560-572.	21.4	250
41	Exome sequencing of 20,791Âcases of type 2 diabetes and 24,440Âcontrols. Nature, 2019, 570, 71-76.	27.8	248
42	New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk. Nature Communications, 2016, 7, 10495.	12.8	245
43	Systematic Evaluation of Pleiotropy Identifies 6 Further Loci Associated WithÂCoronary ArteryÂDisease. Journal of the American College of Cardiology, 2017, 69, 823-836.	2.8	214
44	Genetic Risk Scores for Diabetes Diagnosis and Precision Medicine. Endocrine Reviews, 2019, 40, 1500-1520.	20.1	192
45	Genome-Wide Association Study for Type 2 Diabetes in Indians Identifies a New Susceptibility Locus at 2q21. Diabetes, 2013, 62, 977-986.	0.6	173
46	Trans-ethnic meta-regression of genome-wide association studies accounting for ancestry increases power for discovery and improves fine-mapping resolution. Human Molecular Genetics, 2017, 26, 3639-3650.	2.9	170
47	Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits. Nature Communications, 2017, 8, 14977.	12.8	169
48	Impact of Common Variants of <i>PPARG</i> , <i>KCNJ11</i> , <i>TCF7L2</i> , <i>SLC30A8</i> , <i>HHEX</i> , <i>CDKN2A</i> , <i>IGF2BP2</i> , and <i>CDKAL1</i> on the Risk of Type 2 Diabetes in 5,164 Indians. Diabetes, 2010, 59, 2068-2074.	0.6	163
49	Genome-wide physical activity interactions in adiposity ― A meta-analysis of 200,452 adults. PLoS Genetics, 2017, 13, e1006528.	3.5	158
50	Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels. Nature Communications, 2016, 7, 10494.	12.8	153
51	Regulatory variants at KLF14 influence type 2 diabetes risk via a female-specific effect on adipocyte size and body composition. Nature Genetics, 2018, 50, 572-580.	21.4	143
52	Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria. Nature Communications, 2019, 10, 4130.	12.8	133
53	Novel Blood Pressure Locus and Gene Discovery Using Genome-Wide Association Study and Expression Data Sets From Blood and the Kidney. Hypertension, 2017, 70, .	2.7	123
54	A Large-Scale Multi-ancestry Genome-wide Study Accounting for Smoking Behavior Identifies Multiple Significant Loci for Blood Pressure. American Journal of Human Genetics, 2018, 102, 375-400.	6.2	123

#	Article	IF	Citations
55	Multiethnic genome-wide meta-analysis of ectopic fat depots identifies loci associated with adipocyte development and differentiation. Nature Genetics, 2017, 49, 125-130.	21.4	116
56	Causal relationships between obesity and the leading causes of death in women and men. PLoS Genetics, 2019, 15, e1008405.	3.5	113
57	Trans-ethnic kidney function association study reveals putative causal genes and effects on kidney-specific disease aetiologies. Nature Communications, 2019, 10, 29.	12.8	113
58	Multi-ancestry genome-wide gene–smoking interaction study of 387,272 individuals identifies new loci associated with serum lipids. Nature Genetics, 2019, 51, 636-648.	21.4	112
59	A novel common variant in DCST2 is associated with length in early life and height in adulthood. Human Molecular Genetics, 2015, 24, 1155-1168.	2.9	109
60	Sixteen new lung function signals identified through 1000 Genomes Project reference panel imputation. Nature Communications, 2015, 6, 8658.	12.8	108
61	Clinical and Genetic Correlates of Growth Differentiation Factor 15 in the Community. Clinical Chemistry, 2012, 58, 1582-1591.	3.2	106
62	Genome Wide Association Identifies Common Variants at the SERPINA6/SERPINA1 Locus Influencing Plasma Cortisol and Corticosteroid Binding Globulin. PLoS Genetics, 2014, 10, e1004474.	3. 5	105
63	Genome-wide association study of toxic metals and trace elements reveals novel associations. Human Molecular Genetics, 2015, 24, 4739-4745.	2.9	104
64	Integration of human pancreatic islet genomic data refines regulatory mechanisms at Type 2 Diabetes susceptibility loci. ELife, 2018, 7, .	6.0	103
65	A Genome-Wide Association Study of IVGTT-Based Measures of First-Phase Insulin Secretion Refines the Underlying Physiology of Type 2 Diabetes Variants. Diabetes, 2017, 66, 2296-2309.	0.6	102
66	Genetic inactivation of ANGPTL4 improves glucose homeostasis and is associated with reduced risk of diabetes. Nature Communications, 2018, 9, 2252.	12.8	99
67	Identification and Functional Characterization of G6PC2 Coding Variants Influencing Glycemic Traits Define an Effector Transcript at the G6PC2-ABCB11 Locus. PLoS Genetics, 2015, 11, e1004876.	3 . 5	95
68	Genetic loci associated with heart rate variability and their effects on cardiac disease risk. Nature Communications, 2017, 8, 15805.	12.8	95
69	Identification and validation of N-acetyltransferase 2 as an insulin sensitivity gene. Journal of Clinical Investigation, 2015, 125, 1739-1751.	8.2	94
70	Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals. Nature Genetics, 2020, 52, 1314-1332.	21.4	91
71	Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution. Nature Genetics, 2019, 51, 452-469.	21.4	89
72	Genetic variant effects on gene expression in human pancreatic islets and their implications for T2D. Nature Communications, 2020, 11, 4912.	12.8	89

#	Article	IF	Citations
73	Sex-dimorphic genetic effects and novel loci for fasting glucose and insulin variability. Nature Communications, 2021, 12, 24.	12.8	87
74	Associations of autozygosity with a broad range of human phenotypes. Nature Communications, 2019, 10, 4957.	12.8	84
75	Association of vitamin D with risk of type 2 diabetes: A Mendelian randomisation study in European and Chinese adults. PLoS Medicine, 2018, 15, e1002566.	8.4	82
76	Genome-wide association analyses highlight etiological differences underlying newly defined subtypes of diabetes. Nature Genetics, 2021, 53, 1534-1542.	21.4	81
77	Discovery and Fine-Mapping of Glycaemic and Obesity-Related Trait Loci Using High-Density Imputation. PLoS Genetics, 2015, 11, e1005230.	3.5	77
78	A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape. Nature Communications, 2016, 7, 13357.	12.8	74
79	Genome-Wide and Abdominal MRI Data Provide Evidence That a Genetically Determined Favorable Adiposity Phenotype Is Characterized by Lower Ectopic Liver Fat and Lower Risk of Type 2 Diabetes, Heart Disease, and Hypertension. Diabetes, 2019, 68, 207-219.	0.6	72
80	Chronic obstructive pulmonary disease and related phenotypes: polygenic risk scores in population-based and case-control cohorts. Lancet Respiratory Medicine, the, 2020, 8, 696-708.	10.7	69
81	Trans-ethnic Fine Mapping Highlights Kidney-Function Genes Linked to Salt Sensitivity. American Journal of Human Genetics, 2016, 99, 636-646.	6.2	67
82	High-Sensitivity C-Reactive Protein Levels and Type 2 Diabetes in Urban North Indians. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 2123-2127.	3.6	65
83	Common variants of FTO and the risk of obesity and type 2 diabetes in Indians. Journal of Human Genetics, 2011, 56, 720-726.	2.3	63
84	Identification of 371 genetic variants for age at first sex and birth linked to externalising behaviour. Nature Human Behaviour, 2021, 5, 1717-1730.	12.0	62
85	Type 2 diabetes risk alleles in PAM impact insulin release from human pancreatic \hat{l}^2 -cells. Nature Genetics, 2018, 50, 1122-1131.	21.4	59
86	Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction. Nature Communications, 2020, 11, 2542.	12.8	59
87	Genome-wide association study of type 2 diabetes in Africa. Diabetologia, 2019, 62, 1204-1211.	6.3	56
88	Variants in the fetal genome near pro-inflammatory cytokine genes on 2q13 associate with gestational duration. Nature Communications, 2019, 10, 3927.	12.8	49
89	New Blood Pressure–Associated Loci Identified in Meta-Analyses of 475 000 Individuals. Circulation: Cardiovascular Genetics, 2017, 10, .	5.1	48
90	A Low-Frequency Inactivating <i>AKT2</i> Variant Enriched in the Finnish Population Is Associated With Fasting Insulin Levels and Type 2 Diabetes Risk. Diabetes, 2017, 66, 2019-2032.	0.6	47

#	Article	IF	CITATIONS
91	Predicting and elucidating the etiology of fatty liver disease: A machine learning modeling and validation study in the IMI DIRECT cohorts. PLoS Medicine, 2020, 17, e1003149.	8.4	47
92	Variation in the Plasma Membrane Monoamine Transporter (PMAT) (Encoded by <i>SLC29A4</i>) and Organic Cation Transporter 1 (OCT1) (Encoded by <i>SLC22A1</i>) and Gastrointestinal Intolerance to Metformin in Type 2 Diabetes: An IMI DIRECT Study. Diabetes Care, 2019, 42, 1027-1033.	8.6	43
93	Genetic Predisposition to Type 2 Diabetes and Risk of Subclinical Atherosclerosis and Cardiovascular Diseases Among 160,000 Chinese Adults. Diabetes, 2019, 68, 2155-2164.	0.6	42
94	Evaluation of type 2 diabetes genetic risk variants in Chinese adults: findings from 93,000 individuals from the China Kadoorie Biobank. Diabetologia, 2016, 59, 1446-1457.	6.3	41
95	Effects of apolipoprotein B on lifespan and risks of major diseases including type 2 diabetes: a mendelian randomisation analysis using outcomes in first-degree relatives. The Lancet Healthy Longevity, 2021, 2, e317-e326.	4.6	41
96	Guidance for the utility of linear models in meta-analysis of genetic association studies of binary phenotypes. European Journal of Human Genetics, 2017, 25, 240-245.	2.8	40
97	A Polygenic and Phenotypic Risk Prediction for Polycystic Ovary Syndrome Evaluated by Phenome-Wide Association Studies. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 1918-1936.	3.6	40
98	Variation in the SERPINA6/SERPINA1 locus alters morning plasma cortisol, hepatic corticosteroid binding globulin expression, gene expression in peripheral tissues, and risk of cardiovascular disease. Journal of Human Genetics, 2021, 66, 625-636.	2.3	40
99	Four groups of type 2 diabetes contribute to the etiological and clinical heterogeneity in newly diagnosed individuals: An IMI DIRECT study. Cell Reports Medicine, 2022, 3, 100477.	6.5	39
100	Association of variants in genes involved in pancreatic \hat{l}^2 -cell development and function with type 2 diabetes in North Indians. Journal of Human Genetics, 2011, 56, 695-700.	2.3	37
101	Habitual coffee consumption and cognitive function: a Mendelian randomization meta-analysis in up to 415,530 participants. Scientific Reports, 2018, 8, 7526.	3.3	36
102	Oligonucleotide properties determination and primer designing: a critical examination of predictions. Bioinformatics, 2005, 21, 3918-3925.	4.1	34
103	Elevated levels of C-reactive protein as a risk factor for Metabolic Syndrome in Indians. Atherosclerosis, 2012, 220, 275-281.	0.8	34
104	Homogeneity in the association of body mass index with type 2 diabetes across the UK Biobank: A Mendelian randomization study. PLoS Medicine, 2019, 16, e1002982.	8.4	34
105	RSPO3 impacts body fat distribution and regulates adipose cell biology in vitro. Nature Communications, 2020, 11, 2797.	12.8	34
106	Developing a network view of type 2 diabetes risk pathways through integration of genetic, genomic and functional data. Genome Medicine, 2019, 11, 19.	8.2	33
107	Genome-wide DNA methylation study identifies genes associated with the cardiovascular biomarker GDF-15. Human Molecular Genetics, 2016, 25, 817-827.	2.9	32
108	Obesity-dependent association of TNF-LTA locus with type 2 diabetes in North Indians. Journal of Molecular Medicine, 2010, 88, 515-522.	3.9	31

#	Article	IF	Citations
109	Sequence data and association statistics from 12,940 type 2 diabetes cases and controls. Scientific Data, 2017, 4, 170179.	5.3	31
110	Early Metabolic Features of Genetic Liability to Type 2 Diabetes: Cohort Study With Repeated Metabolomics Across Early Life. Diabetes Care, 2020, 43, 1537-1545.	8.6	29
111	Deep learning models predict regulatory variants in pancreatic islets and refine type 2 diabetes association signals. ELife, 2020, 9, .	6.0	28
112	Evaluation of DOK5 as a susceptibility gene for type 2 diabetes and obesity in North Indian population. BMC Medical Genetics, 2010, 11, 35.	2.1	26
113	A Meta-Analysis of Genome-Wide Association Studies of Growth Differentiation Factor-15 Concentration in Blood. Frontiers in Genetics, 2018, 9, 97.	2.3	26
114	The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia: design, results and future prospects. European Journal of Epidemiology, 2019, 34, 279-300.	5.7	26
115	Genetic Studies of Leptin Concentrations Implicate Leptin in the Regulation of Early Adiposity. Diabetes, 2020, 69, 2806-2818.	0.6	26
116	Bone mineral density and risk of type 2 diabetes and coronary heart disease: A Mendelian randomization study. Wellcome Open Research, 2017, 2, 68.	1.8	26
117	Unsupervised Clustering of Missense Variants in HNF1A Using Multidimensional Functional Data Aids Clinical Interpretation. American Journal of Human Genetics, 2020, 107, 670-682.	6.2	25
118	Genome-Wide Association Study of Peripheral Artery Disease. Circulation Genomic and Precision Medicine, 2021, 14, e002862.	3.6	24
119	Genetic Association, Post-translational Modification, and Protein-Protein Interactions in Type 2 Diabetes Mellitus. Molecular and Cellular Proteomics, 2005, 4, 1029-1037.	3.8	23
120	Genetic studies of abdominal MRI data identify genes regulating hepcidin as major determinants of liver iron concentration. Journal of Hepatology, 2019, 71, 594-602.	3.7	23
121	A Multi-omic Integrative Scheme Characterizes Tissues of Action at Loci Associated with Type 2 Diabetes. American Journal of Human Genetics, 2020, 107, 1011-1028.	6.2	23
122	Phenome-wide association analysis of LDL-cholesterol lowering genetic variants in PCSK9. BMC Cardiovascular Disorders, 2019, 19, 240.	1.7	22
123	Discovery of biomarkers for glycaemic deterioration before and after the onset of type 2 diabetes: descriptive characteristics of the epidemiological studies within the IMI DIRECT Consortium. Diabetologia, 2019, 62, 1601-1615.	6.3	22
124	Transancestral fine-mapping of four type 2 diabetes susceptibility loci highlights potential causal regulatory mechanisms. Human Molecular Genetics, 2016, 25, 2070-2081.	2.9	21
125	Exome-Derived Adiponectin-Associated Variants Implicate Obesity and Lipid Biology. American Journal of Human Genetics, 2019, 105, 15-28.	6.2	21
126	Sex Differences in the Risk of Coronary Heart Disease Associated With Type 2 Diabetes: A Mendelian Randomization Analysis. Diabetes Care, 2021, 44, 556-562.	8.6	21

#	Article	IF	CITATIONS
127	Identification of genetic effects underlying type 2 diabetes in South Asian and European populations. Communications Biology, 2022, 5, 329.	4.4	21
128	Fine-scale population structure in the UK Biobank: implications for genome-wide association studies. Human Molecular Genetics, 2020, 29, 2803-2811.	2.9	20
129	Analysis of overlapping genetic association in type 1 and type 2 diabetes. Diabetologia, 2021, 64, 1342-1347.	6.3	20
130	Meta-analysis of exome array data identifies six novel genetic loci for lung function. Wellcome Open Research, 2018, 3, 4.	1.8	19
131	Genome-Wide Association Studies of Estimated Fatty Acid Desaturase Activity in Serum and Adipose Tissue in Elderly Individuals: Associations with Insulin Sensitivity. Nutrients, 2018, 10, 1791.	4.1	18
132	Genetic loci and prioritization of genes for kidney function decline derived from a meta-analysis of 62 longitudinal genome-wide association studies. Kidney International, 2022, 102, 624-639.	5.2	18
133	Profiles of Glucose Metabolism in Different Prediabetes Phenotypes, Classified by Fasting Glycemia, 2-Hour OGTT, Glycated Hemoglobin, and 1-Hour OGTT: An IMI DIRECT Study. Diabetes, 2021, 70, 2092-2106.	0.6	17
134	Differential and shared genetic effects on kidney function between diabetic and non-diabetic individuals. Communications Biology, 2022, 5, .	4.4	17
135	Association analysis of TNFRSF1B polymorphisms with type 2 diabetes and its related traits in North India. Genomic Medicine, 2008, 2, 93-100.	0.3	16
136	Common variants of SLAMF1 and ITLN1 on 1q21 are associated with type 2 diabetes in Indian population. Journal of Human Genetics, 2012, 57, 184-190.	2.3	16
137	Processes Underlying Glycemic Deterioration in Type 2 Diabetes: An IMI DIRECT Study. Diabetes Care, 2021, 44, 511-518.	8.6	16
138	The value of genetic risk scores in precision medicine for diabetes. Expert Review of Precision Medicine and Drug Development, 2018, 3, 279-281.	0.7	15
139	No association of TNFRSF1B variants with type 2 diabetes in Indians of Indo-European origin. BMC Medical Genetics, 2011, 12, 110.	2.1	14
140	Common Variants in CRP and LEPR Influence High Sensitivity C-Reactive Protein Levels in North Indians. PLoS ONE, 2011, 6, e24645.	2.5	14
141	Evaluating human genetic support for hypothesized metabolic disease genes. Cell Metabolism, 2022, 34, 661-666.	16.2	14
142	The role of physical activity in metabolic homeostasis before and after the onset of type 2 diabetes: an IMI DIRECT study. Diabetologia, 2020, 63, 744-756.	6.3	12
143	The genomics of heart failure: design and rationale of the HERMES consortium. ESC Heart Failure, 2021, 8, 5531-5541.	3.1	11
144	Meta-analysis of exome array data identifies six novel genetic loci for lung function. Wellcome Open Research, 0, 3, 4.	1.8	11

#	Article	IF	CITATIONS
145	Genetic variation in the CYP2B6 Gene is related to circulating 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) concentrations: an observational population-based study. Environmental Health, 2014, 13, 34.	4.0	10
146	Genome-wide association study of plasma levels of polychlorinated biphenyls disclose an association with the CYP2B6 gene in a population-based sample. Environmental Research, 2015, 140, 95-101.	7.5	10
147	Type 2 diabetes sex-specific effects associated with E167K coding variant in TM6SF2. IScience, 2021, 24, 103196.	4.1	10
148	Integrative network analysis highlights biological processes underlying GLP-1 stimulated insulin secretion: A DIRECT study. PLoS ONE, 2018, 13, e0189886.	2.5	9
149	Allelic heterogeneity of molecular events in human coagulation factor IX in Asian Indians. Human Mutation, 2007, 28, 526-526.	2.5	8
150	Whole blood co-expression modules associate with metabolic traits and type 2 diabetes: an IMI-DIRECT study. Genome Medicine, 2020, 12, 109.	8.2	8
151	Multifaceted genome-wide study identifies novel regulatory loci in SLC22A11 and ZNF45 for body mass index in Indians. Molecular Genetics and Genomics, 2020, 295, 1013-1026.	2.1	8
152	Molecular characterization of hemophilia B in North Indian families: identification of novel and recurrent molecular events in the factor IX gene. Haematologica, 2004, 89, 1498-503.	3.5	8
153	Large-Scale Analyses Provide No Evidence for Gene-Gene Interactions Influencing Type 2 Diabetes Risk. Diabetes, 2020, 69, 2518-2522.	0.6	7
154	Post-load glucose subgroups and associated metabolic traits in individuals with type 2 diabetes: An IMI-DIRECT study. PLoS ONE, 2020, 15, e0242360.	2.5	7
155	Genetic and methylation variation in the CYP2B6 gene is related to circulating p,p′-dde levels in a population-based sample. Environment International, 2017, 98, 212-218.	10.0	5
156	Elevated risk of invasive group A streptococcal disease and host genetic variation in the human leucocyte antigen locus. Genes and Immunity, 2020, 21, 63-70.	4.1	5
157	Genetic Predisposition to Coronary Artery Disease in Type 2 Diabetes Mellitus. Circulation Genomic and Precision Medicine, 2020, 13, e002769.	3.6	5
158	Genome-Wide Association Analysis of Pancreatic Beta-Cell Glucose Sensitivity. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 80-90.	3.6	5
159	Dietary metabolite profiling brings new insight into the relationship between nutrition and metabolic risk: An IMI DIRECT study. EBioMedicine, 2020, 58, 102932.	6.1	3
160	Protein molecular function influences mutation rates in human genetic diseases with allelic heterogeneity. Biochemical and Biophysical Research Communications, 2011, 412, 716-722.	2.1	2
161	Meta-analysis of exome array data identifies six novel genetic loci for lung function. Wellcome Open Research, 0, 3, 4.	1.8	1
162	Copy number variations in "classical―obesity candidate genes are not frequently associated with severe early-onset obesity in children. Journal of Pediatric Endocrinology and Metabolism, 2017, 30, 507-515.	0.9	0

#	Article	IF	CITATIONS
163	Abstract 49: A Genome-wide Meta-analysis of the Combined Influence of Physical Activity and Genetic Variants on Body Fat Distribution in 94,779 Individuals of European Descent. Circulation, 2014, 129, .	1.6	O
164	Causal relationships between obesity and the leading causes of death in women and men. , 2019, 15, e 1008405 .		O
165	Causal relationships between obesity and the leading causes of death in women and men. , 2019, 15, e1008405.		O
166	Causal relationships between obesity and the leading causes of death in women and men. , 2019, 15, e1008405.		0
167	Causal relationships between obesity and the leading causes of death in women and men. , 2019, 15, e 1008405 .		0
168	Title is missing!. , 2020, 17, e1003149.		0
169	Title is missing!. , 2020, 17, e1003149.		O
170	Title is missing!. , 2020, 17, e1003149.		0
171	Title is missing!. , 2020, 17, e1003149.		O
172	Title is missing!. , 2020, 17, e1003149.		0
173	Title is missing!. , 2019, 16, e1002982.		O
174	Title is missing!. , 2019, 16, e1002982.		0
175	Title is missing!. , 2019, 16, e1002982.		0
176	Title is missing!. , 2019, 16, e1002982.		0
177	Title is missing!. , 2019, 16, e1002982.		O