Grégory A Vert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2799408/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	IRT1, an Arabidopsis Transporter Essential for Iron Uptake from the Soil and for Plant Growth. Plant Cell, 2002, 14, 1223-1233.	6.6	1,464
2	Monoubiquitin-dependent endocytosis of the IRON-REGULATED TRANSPORTER 1 (IRT1) transporter controls iron uptake in plants. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E450-8.	7.1	406
3	MOLECULAR MECHANISMS OF STEROID HORMONE SIGNALING IN PLANTS. Annual Review of Cell and Developmental Biology, 2005, 21, 177-201.	9.4	369
4	Downstream nuclear events in brassinosteroid signalling. Nature, 2006, 441, 96-100.	27.8	353
5	Integration of auxin and brassinosteroid pathways by Auxin Response Factor 2. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9829-9834.	7.1	350
6	Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis. Genes and Development, 2004, 18, 448-460.	5.9	341
7	Arabidopsis IRT2 gene encodes a root-periphery iron transporter. Plant Journal, 2001, 26, 181-189.	5.7	272
8	Dual Regulation of the Arabidopsis High-Affinity Root Iron Uptake System by Local and Long-Distance Signals. Plant Physiology, 2003, 132, 796-804.	4.8	262
9	Chemical Inhibition of a Subset of Arabidopsis thaliana GSK3-like Kinases Activates Brassinosteroid Signaling. Chemistry and Biology, 2009, 16, 594-604.	6.0	240
10	Metal Sensing by the IRT1 Transporter-Receptor Orchestrates Its Own Degradation and Plant Metal Nutrition. Molecular Cell, 2018, 69, 953-964.e5.	9.7	231
11	Polarization of IRON-REGULATED TRANSPORTER 1 (IRT1) to the plant-soil interface plays crucial role in metal homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8293-8298.	7.1	229
12	Arabidopsis bHLH100 and bHLH101 Control Iron Homeostasis via a FIT-Independent Pathway. PLoS ONE, 2012, 7, e44843.	2.5	190
13	Cytokinins negatively regulate the root iron uptake machinery in Arabidopsis through a growthâ€dependent pathway. Plant Journal, 2008, 55, 289-300.	5.7	188
14	A Putative Function for the Arabidopsis Fe–Phytosiderophore Transporter Homolog AtYSL2 in Fe and Zn Homeostasis. Plant and Cell Physiology, 2005, 46, 762-774.	3.1	163
15	Iron transport in plants: better be safe than sorry. Current Opinion in Plant Biology, 2013, 16, 322-327.	7.1	163
16	Arabidopsis IRT2 cooperates with the high-affinity iron uptake system to maintain iron homeostasis in root epidermal cells. Planta, 2009, 229, 1171-1179.	3.2	161
17	The FRD3 Citrate Effluxer Promotes Iron Nutrition between Symplastically Disconnected Tissues throughout <i>Arabidopsis</i> Development. Plant Cell, 2011, 23, 2725-2737.	6.6	147
18	Internalization and vacuolar targeting of the brassinosteroid hormone receptor BRI1 are regulated by ubiquitination. Nature Communications, 2015, 6, 6151.	12.8	143

GRéGORY A VERT

#	Article	IF	CITATIONS
19	The dynamics of plant plasma membrane proteins: PINs and beyond. Development (Cambridge), 2014, 141, 2924-2938.	2.5	128
20	Crosstalk in Cellular Signaling: Background Noise or the Real Thing?. Developmental Cell, 2011, 21, 985-991.	7.0	122
21	A versatile Multisite Gatewayâ€compatible promoter and transgenic line collection for cell typeâ€specific functional genomics in Arabidopsis. Plant Journal, 2016, 85, 320-333.	5.7	116
22	Proteasomeâ€mediated turnover of the transcriptional activator FIT is required for plant ironâ€deficiency responses. Plant Journal, 2011, 66, 1044-1052.	5.7	112
23	Tissue-Specific Regulation of Gibberellin Signaling Fine-Tunes Arabidopsis Iron-Deficiency Responses. Developmental Cell, 2016, 37, 190-200.	7.0	104
24	Brassinosteroid signaling-dependent root responses to prolonged elevated ambient temperature. Nature Communications, 2017, 8, 309.	12.8	102
25	Dynamic Control of the High-Affinity Iron Uptake Complex in Root Epidermal Cells. Plant Physiology, 2020, 184, 1236-1250.	4.8	68
26	Brassinosteroid signaling and BRI1 dynamics went underground. Current Opinion in Plant Biology, 2016, 33, 92-100.	7.1	58
27	Unraveling K63 Polyubiquitination Networks by Sensor-Based Proteomics. Plant Physiology, 2016, 171, 1808-1820.	4.8	53
28	Proteasomeâ€independent functions of lysineâ€63 polyubiquitination in plants. New Phytologist, 2018, 217, 995-1011.	7.3	53
29	The bifunctional transporterâ€receptor <scp>IRT</scp> 1 at the heart of metal sensing and signalling. New Phytologist, 2019, 223, 1173-1178.	7.3	42
30	Brassinosteroids, gibberellins and light-mediated signalling are the three-way controls of plant sprouting. Nature Cell Biology, 2012, 14, 788-790.	10.3	36
31	Single Event Resolution of Plant Plasma Membrane Protein Endocytosis by TIRF Microscopy. Frontiers in Plant Science, 2017, 8, 612.	3.6	36
32	Advanced Cataloging of Lysine-63 Polyubiquitin Networks by Genomic, Interactome, and Sensor-Based Proteomic Analyses. Plant Cell, 2020, 32, 123-138.	6.6	34
33	Plant Nutrition: Root Transporters on the Move. Plant Physiology, 2014, 166, 500-508.	4.8	33
34	Endocytosis of BRASSINOSTEROID INSENSITIVE1 Is Partly Driven by a Canonical Tyr-Based Motif. Plant Cell, 2020, 32, 3598-3612.	6.6	30
35	The many facets of protein ubiquitination and degradation in plant root iron-deficiency responses. Journal of Experimental Botany, 2021, 72, 2071-2082.	4.8	28
36	Zooming into plant ubiquitin-mediated endocytosis. Current Opinion in Plant Biology, 2017, 40, 56-62.	7.1	26

GRéGORY A VERT

#	Article	IF	CITATIONS
37	Regulation of Root Nutrient Transporters by CIPK23: â€~One Kinase to Rule Them All'. Plant and Cell Physiology, 2021, 62, 553-563.	3.1	26
38	A Toggle Switch in Plant Nitrate Uptake. Cell, 2009, 138, 1064-1066.	28.9	24
39	Plant Signaling: Brassinosteroids, Immunity and Effectors Are BAK !. Current Biology, 2008, 18, R963-R965.	3.9	21
40	Endocytosis in plants: Peculiarities and roles in the regulated trafficking of plant metal transporters. Biology of the Cell, 2021, 113, 1-13.	2.0	19
41	Experimental toolbox for quantitative evaluation of clathrin-mediated endocytosis in the plant model <i>Arabidopsis</i> . Journal of Cell Science, 2020, 133, .	2.0	17
42	Regulation of Iron Uptake by IRT1: Endocytosis Pulls the Trigger. Molecular Plant, 2015, 8, 977-979.	8.3	16
43	Nonselective Chemical Inhibition of Sec7 Domain-Containing ARF GTPase Exchange Factors. Plant Cell, 2018, 30, 2573-2593.	6.6	16
44	Ubiquitination of transporters at the forefront of plant nutrition. Plant Signaling and Behavior, 2011, 6, 1597-1599.	2.4	14
45	Getting to the root of plant iron uptake and cell-cell transport: Polarity matters!. Communicative and Integrative Biology, 2015, 8, e1038441.	1.4	12
46	A quick journey into the diversity of iron uptake strategies in photosynthetic organisms. Plant Signaling and Behavior, 2021, 16, 1975088.	2.4	11
47	Plant Cell Signaling: SUMO Is under the Influence of Steroids and Salt. Current Biology, 2020, 30, R342-R344.	3.9	1
48	Probing Activation and Deactivation of the BRASSINOSTEROID INSENSITIVE1 Receptor Kinase by Immunoprecipitation. Methods in Molecular Biology, 2017, 1564, 169-180.	0.9	0