
Megan M Herting

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2797196/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Best Practices in Structural Neuroimaging of Neurodevelopmental Disorders. Neuropsychology Review, 2022, 32, 400-418.	4.9	14
2	Contextualizing adolescent structural brain development: Environmental determinants and mental health outcomes. Current Opinion in Psychology, 2022, 44, 170-176.	4.9	31
3	Associations between testosterone, estradiol, and androgen receptor genotype with amygdala subregions in adolescents. Psychoneuroendocrinology, 2022, 137, 105604.	2.7	3
4	Analysis of Early-Life Growth and Age at Pubertal Onset in US Children. JAMA Network Open, 2022, 5, e2146873.	5.9	13
5	Neurotoxicants, the Developing Brain, and Mental Health. Biological Psychiatry Global Open Science, 2022, 2, 223-232.	2.2	14
6	Congenital Adrenal Hyperplasia and Brain Health: A Systematic Review of Structural, Functional, and Diffusion Magnetic Resonance Imaging (MRI) Investigations. Journal of Child Neurology, 2022, 37, 758-783.	1.4	3
7	The Roles of Physical Activity, Exercise, and Fitness in Promoting Resilience During Adolescence: Effects on Mental Well-Being and Brain Development. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2021, 6, 225-237.	1.5	68
8	Prenatal air pollution exposure and neurodevelopment: A review and blueprint for a harmonized approach within ECHO. Environmental Research, 2021, 196, 110320.	7.5	53
9	Child physical activity as a modifier of the relationship between prenatal exposure to maternal overweight/obesity and neurocognitive outcomes in offspring. International Journal of Obesity, 2021, 45, 1310-1320.	3.4	2
10	Understanding the role of aerobic fitness, spatial learning, and hippocampal subfields in adolescent males. Scientific Reports, 2021, 11, 9311.	3.3	7
11	Restructuring of amygdala subregion apportion across adolescence. Developmental Cognitive Neuroscience, 2021, 48, 100883.	4.0	8
12	A Researcher's Guide to the Measurement and Modeling of Puberty in the ABCD Study® at Baseline. Frontiers in Endocrinology, 2021, 12, 608575.	3.5	34
13	Association of Local Variation in Neighborhood Disadvantage in Metropolitan Areas With Youth Neurocognition and Brain Structure. JAMA Pediatrics, 2021, 175, e210426.	6.2	48
14	Developmental Changes in Food Perception and Preference. Journal of the Endocrine Society, 2021, 5, A7-A8.	0.2	0
15	Editorial: Understanding the Link Between the Developing Brain and Behavior in Adolescents. Frontiers in Human Neuroscience, 2021, 15, 663454.	2.0	Ο
16	Developmental Changes in Food Perception and Preference. Frontiers in Psychology, 2021, 12, 654200.	2.1	3
17	Rates of Incidental Findings in Brain Magnetic Resonance Imaging in Children. JAMA Neurology, 2021, 78, 578.	9.0	28
18	White Matter Microstructural Differences in Youth With Classical Congenital Adrenal Hyperplasia. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 3196-3212.	3.6	8

MEGAN M HERTING

#	Article	IF	CITATIONS
19	Gray Matter Structures Mediate Associations between Neighborhood Socioeconomic Status and Cognition in Adolescents: Application of a Mediation Analysis Method. ISEE Conference Abstracts, 2021, 2021, .	0.0	0
20	Microstructural properties within the amygdala and affiliated white matter tracts across adolescence. Neurolmage, 2021, 243, 118489.	4.2	10
21	Inter-individual variability in structural brain development from late childhood to young adulthood. NeuroImage, 2021, 242, 118450.	4.2	64
22	A Comprehensive Overview of the Physical Health of the Adolescent Brain Cognitive Development Study Cohort at Baseline. Frontiers in Pediatrics, 2021, 9, 734184.	1.9	11
23	Risk of lead exposure, subcortical brain structure, and cognition in a large cohort of 9- to 10-year-old children. PLoS ONE, 2021, 16, e0258469.	2.5	8
24	Adolescent Brain Cognitive Development (ABCD) study Linked External Data (LED): Protocol and practices for geocoding and assignment of environmental data. Developmental Cognitive Neuroscience, 2021, 52, 101030.	4.0	44
25	Association of Outdoor Ambient Fine Particulate Matter With Intracellular White Matter Microstructural Properties Among Children. JAMA Network Open, 2021, 4, e2138300.	5.9	18
26	Imputation Strategy for Reliable Regional MRI Morphological Measurements. Neuroinformatics, 2020, 18, 59-70.	2.8	13
27	Sex differences in the association between prenatal exposure to maternal obesity and hippocampal volume in children. Brain and Behavior, 2020, 10, e01522.	2.2	19
28	Fine particulate matter exposure during childhood relates to hemispheric-specific differences in brain structure. Environment International, 2020, 143, 105933.	10.0	65
29	Prefrontal Cortex and Amygdala Subregion Morphology Are Associated With Obesity and Dietary Self-control in Children and Adolescents. Frontiers in Human Neuroscience, 2020, 14, 563415.	2.0	16
30	Consensus Parameter: Research Methodologies to Evaluate Neurodevelopmental Effects of Pubertal Suppression in Transgender Youth. Transgender Health, 2020, 5, 246-257.	2.5	22
31	Brain Differences in the Prefrontal Cortex, Amygdala, and Hippocampus in Youth with Congenital Adrenal Hyperplasia. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 1098-1111.	3.6	31
32	Brain morphometric differences in youth with and without perinatally-acquired HIV: A cross-sectional study. NeuroImage: Clinical, 2020, 26, 102246.	2.7	5
33	Correspondence Between Perceived Pubertal Development and Hormone Levels in 9-10 Year-Olds From the Adolescent Brain Cognitive Development Study. Frontiers in Endocrinology, 2020, 11, 549928.	3.5	45
34	Image processing and analysis methods for the Adolescent Brain Cognitive Development Study. NeuroImage, 2019, 202, 116091.	4.2	539
35	Outdoor Air Pollution and Brain Structure and Function From Across Childhood to Young Adulthood: A Methodological Review of Brain MRI Studies. Frontiers in Public Health, 2019, 7, 332.	2.7	41
36	Development of subcortical volumes across adolescence in males and females: A multisample study of longitudinal changes. NeuroImage, 2018, 172, 194-205.	4.2	133

MEGAN M HERTING

#	Article	IF	CITATIONS
37	Neuroanatomical morphometric characterization of sex differences in youth using statistical learning. Neurolmage, 2018, 172, 217-227.	4.2	82
38	Test-retest reliability of longitudinal task-based fMRI: Implications for developmental studies. Developmental Cognitive Neuroscience, 2018, 33, 17-26.	4.0	97
39	Lower total and regional grey matter brain volumes in youth with perinatally-acquired HIV infection: Associations with HIV disease severity, substance use, and cognition. Brain, Behavior, and Immunity, 2017, 62, 100-109.	4.1	32
40	Development of the Cerebral Cortex across Adolescence: A Multisample Study of Inter-Related Longitudinal Changes in Cortical Volume, Surface Area, and Thickness. Journal of Neuroscience, 2017, 37, 3402-3412.	3.6	496
41	Longitudinal changes in pubertal maturation and white matter microstructure. Psychoneuroendocrinology, 2017, 81, 70-79.	2.7	58
42	Puberty and structural brain development in humans. Frontiers in Neuroendocrinology, 2017, 44, 122-137.	5.2	202
43	Exercise, cognition, and the adolescent brain. Birth Defects Research, 2017, 109, 1672-1679.	1.5	59
44	Low-Cost Air Quality Monitoring Tools: From Research to Practice (A Workshop Summary). Sensors, 2017, 17, 2478.	3.8	144
45	Aerobic Fitness Linked to Cortical Brain Development in Adolescent Males: Preliminary Findings Suggest a Possible Role of BDNF Genotype. Frontiers in Human Neuroscience, 2016, 10, 327.	2.0	27
46	Quality Control of Structural MRI Images Applied Using FreeSurfer—A Hands-On Workflow to Rate Motion Artifacts. Frontiers in Neuroscience, 2016, 10, 558.	2.8	111
47	Structural brain development between childhood and adulthood: Convergence across four longitudinal samples. NeuroImage, 2016, 141, 273-281.	4.2	427
48	White matter microstructure among youth with perinatally acquired HIV is associated with disease severity. Aids, 2015, 29, 1035-1044.	2.2	47
49	A Longitudinal Study: Changes in Cortical Thickness and Surface Area during Pubertal Maturation. PLoS ONE, 2015, 10, e0119774.	2.5	113
50	Default Mode Connectivity in Youth With Perinatally Acquired HIV. Medicine (United States), 2015, 94, e1417.	1.0	30
51	The role of testosterone and estradiol in brain volume changes across adolescence: A longitudinal structural MRI study. Human Brain Mapping, 2014, 35, 5633-5645.	3.6	192
52	White matter connectivity and aerobic fitness in male adolescents. Developmental Cognitive Neuroscience, 2014, 7, 65-75.	4.0	68
53	Hemispheric lateralization of verbal and spatial working memory during adolescence. Brain and Cognition, 2013, 82, 58-68.	1.8	98
54	High and low sensation seeking adolescents show distinct patterns of brain activity during reward processing. Neurolmage, 2013, 66, 184-193.	4.2	63

MEGAN M HERTING

#	Article	IF	CITATIONS
55	White matter microstructure correlates of inhibition and task-switching in adolescents. Brain Research, 2013, 1527, 15-28.	2.2	49
56	Differences in Brain Activity during a Verbal Associative Memory Encoding Task in High- and Low-fit Adolescents. Journal of Cognitive Neuroscience, 2013, 25, 595-612.	2.3	50
57	The Impact of Sex, Puberty, and Hormones on White Matter Microstructure in Adolescents. Cerebral Cortex, 2012, 22, 1979-1992.	2.9	288
58	Aerobic fitness relates to learning on a virtual Morris Water Task and hippocampal volume in adolescents. Behavioural Brain Research, 2012, 233, 517-525.	2.2	108
59	Altered fronto-cerebellar connectivity in alcohol-naÃ ⁻ ve youth with a family history of alcoholism. NeuroImage, 2011, 54, 2582-2589.	4.2	92
60	Delay Discounting Behavior and White Matter Microstructure Abnormalities in Youth With a Family History of Alcoholism. Alcoholism: Clinical and Experimental Research, 2010, 34, 1590-1602.	2.4	103