Ana F Nogueira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2796399/publications.pdf

Version: 2024-02-01

53794 51608 8,189 185 45 86 citations h-index g-index papers 193 193 193 10466 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Revealing the Transient Formation Dynamics and Optoelectronic Properties of 2D Ruddlesdenâ€Popper Phases on 3D Perovskites. Advanced Energy Materials, 2023, 13, .	19.5	14
2	Influence of reaction time on properties of regioregular poly(3-hexylthiophene) by the Grignard metathesis polymerization. Journal of Thermal Analysis and Calorimetry, 2022, 147, 5037-5048.	3.6	6
3	Consensus statement: Standardized reporting of power-producing luminescent solar concentrator performance. Joule, 2022, 6, 8-15.	24.0	66
4	SnO2 as thin conformal layer over BiVO4 surface for enhanced charge carrier separation towards O2 evolution from water oxidation. International Journal of Hydrogen Energy, 2022, 47, 5211-5219.	7.1	5
5	Light-induced halide segregation in perovskites with wrinkled morphology. Journal of Energy Chemistry, 2022, 71, 83-88.	12.9	2
6	Recent developments in perovskite-based precursor inks for scalable architectures of perovskite solar cell technology. Sustainable Energy and Fuels, 2022, 6, 2879-2900.	4.9	19
7	Improving the Stability and Efficiency of Perovskite Solar Cells by a Bidentate Anilinium Salt. Jacs Au, 2022, 2, 1306-1312.	7.9	11
8	Revealing the Perovskite Film Formation Using the Gas Quenching Method by In Situ GIWAXS: Morphology, Properties, and Device Performance. Advanced Functional Materials, 2021, 31, 2007473.	14.9	40
9	Device Performance of Emerging Photovoltaic Materials (Version 1). Advanced Energy Materials, 2021, 11, 2002774.	19.5	93
10	Photo and electroluminescence of a phenylene vinylene conjugated polymer containing bipirydine units and chelated europium complex. Journal of Luminescence, 2021, 230, 117764.	3.1	6
11	Synthesis of novel low bandgap random and block terpolymers with improved performance in organic solar cells. Journal of Materials Research and Technology, 2021, 10, 51-65.	5.8	4
12	Reduced graphene oxide in perovskite solar cells: the influence on film formation, photophysics, performance, and stability. Journal of Materials Chemistry C, 2021, 9, 14648-14658.	5.5	9
13	Challenges and prospects about the graphene role in the design of photoelectrodes for sunlight-driven water splitting. RSC Advances, 2021, 11, 14374-14398.	3.6	8
14	Multidimensional coherent spectroscopy reveals triplet state coherences in cesium lead-halide perovskite nanocrystals. Science Advances, 2021, 7, .	10.3	24
15	Study of open circuit voltage loss mechanism in perovskite solar cells. Japanese Journal of Applied Physics, 2021, 60, SBBF13.	1.5	11
16	Toward Engineering Intrinsic Line Widths and Line Broadening in Perovskite Nanoplatelets. ACS Nano, 2021, 15, 6499-6506.	14.6	17
17	Low-Temperature Blade-Coated Perovskite Solar Cells. Industrial & Engineering Chemistry Research, 2021, 60, 7145-7154.	3.7	17
18	Layered metal halide perovskite solar cells: A review from structureâ€properties perspective towards maximization of their performance and stability. EcoMat, 2021, 3, e12124.	11.9	27

#	Article	IF	CITATIONS
19	Statistical and block conjugated polymers for bulk heterojunction solar cells: Molecular orientation, charge transfer dynamics and device performance. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 270, 115225.	3.5	1
20	Compositional heterogeneity in Cs _{<i>y</i>} Pb(Br _{<i>x</i>} Isub>Is^' <i>x</i>) _{3< perovskite films and its impact on phase behavior. Energy and Environmental Science, 2021, 14, 6394-6405.}	/sub>	20
21	Double Perovskite Single-Crystal Photoluminescence Quenching and Resurge: The Role of Cu Doping on its Photophysics and Crystal Structure. Journal of Physical Chemistry Letters, 2021, 12, 10444-10449.	4.6	5
22	Device Performance of Emerging Photovoltaic Materials (Version 2). Advanced Energy Materials, 2021, $11, \dots$	19.5	66
23	Introduction to celebrating Latin American talent in chemistry. RSC Advances, 2021, 11, 40216-40219.	3.6	1
24	Synthesis and characterization of vinazene end capped dipyrrolo[2,3-b:2′,3′-e]pyrazine-2,6(1H,5H)-dione small molecules as non-fullerene acceptors for bulk heterojunction organic solar cells. Materials Chemistry and Physics, 2020, 240, 122176.	4.0	8
25	Engineering interfacial modification on nanocrystalline hematite photoanodes: A close look into the efficiency parameters. Solar Energy Materials and Solar Cells, 2020, 208, 110377.	6.2	12
26	Structural Origins of Light-Induced Phase Segregation in Organic-Inorganic Halide Perovskite Photovoltaic Materials. Matter, 2020, 2, 207-219.	10.0	128
27	Postpassivation of Multication Perovskite with Rubidium Butyrate. ACS Photonics, 2020, 7, 2282-2291.	6.6	11
28	Novel zero-dimensional lead-free bismuth based perovskites: from synthesis to structural and optoelectronic characterization. Materials Advances, 2020, 1, 3439-3448.	5.4	19
29	Influence of the Vibrational Modes from the Organic Moieties in 2D Lead Halides on Excitonic Recombination and Phase Transition. Advanced Optical Materials, 2020, 8, 2001431.	7.3	19
30	Hematite Nanorods Photoanodes Decorated by Cobalt Hexacyanoferrate: The Role of Mixed Oxidized States on the Enhancement of Photoelectrochemical Performance. ACS Applied Energy Materials, 2020, 3, 10097-10107.	5.1	7
31	Effect of the incorporation of poly(ethylene oxide) copolymer on the stability of perovskite solar cells. Journal of Materials Chemistry C, 2020, 8, 9697-9706.	5.5	8
32	Shades of transparency. Nature Energy, 2020, 5, 428-429.	39.5	4
33	Bi electrodeposition on WO3 photoanode to improve the photoactivity of the WO3/BiVO4 heterostructure to water splitting. Chemical Engineering Journal, 2020, 399, 125836.	12.7	41
34	Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nature Energy, 2020, 5, 35-49.	39.5	797
35	In Situ Analysis Reveals the Role of 2D Perovskite in Preventing Thermal-Induced Degradation in 2D/3D Perovskite Interfaces. Nano Letters, 2020, 20, 3992-3998.	9.1	95
36	Degradation mechanisms in mixed-cation and mixed-halide Cs _x FA _{1â^'x} Pb(Br _y I _{1â^'y}) ₃ perovskite films under ambient conditions. Journal of Materials Chemistry A, 2020, 8, 9302-9312.	10.3	26

#	Article	IF	CITATIONS
37	Revealing the Role of Tin(IV) Halides in the Anisotropic Growth of CsPbX 3 Perovskite Nanoplates. Angewandte Chemie, 2020, 132, 11598-11606.	2.0	3
38	Revealing the Role of Tin(IV) Halides in the Anisotropic Growth of CsPbX ₃ Perovskite Nanoplates. Angewandte Chemie - International Edition, 2020, 59, 11501-11509.	13.8	22
39	Partially-Bright Triplet Excitons in CsPbI3 Perovskite Nanocrystals and their Coherent Dynamics. , 2020, , .		0
40	Printed single-walled carbon-nanotubes-based counter electrodes for dye-sensitized solar cells with copper-based redox mediators. Semiconductor Science and Technology, 2019, 34, 105001.	2.0	17
41	The Thermomechanical Properties of Thermally Evaporated Bismuth Triiodide Thin Films. Scientific Reports, 2019, 9, 11785.	3.3	7
42	Synthesis of Polycrystalline Ruddlesden–Popper Organic Lead Halides and Their Growth Dynamics. Chemistry of Materials, 2019, 31, 9472-9479.	6.7	18
43	Nanoscale mapping of chemical composition in organic-inorganic hybrid perovskite films. Science Advances, 2019, 5, eaaw6619.	10.3	79
44	Design, synthesis and characterization of 1,8-naphthalimide based fullerene derivative as electron transport material for inverted perovskite solar cells. Synthetic Metals, 2019, 249, 25-30.	3.9	10
45	Exploring the formation of formamidinium-based hybrid perovskites by antisolvent methods: <i>in situ</i> GIWAXS measurements during spin coating. Sustainable Energy and Fuels, 2019, 3, 2287-2297.	4.9	38
46	Progress on Electrolytes Development in Dye-Sensitized Solar Cells. Materials, 2019, 12, 1998.	2.9	152
47	In Situ 2D Perovskite Formation and the Impact of the 2D/3D Structures on Performance and Stability of Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900199.	5. 8	30
48	Unraveling the role of single layer graphene as overlayer on hematite photoanodes. Journal of Catalysis, 2019, 372, 109-118.	6.2	13
49	Effect of dimensionality on the optical absorption properties of CsPbI3 perovskite nanocrystals. Journal of Chemical Physics, 2019, 151, 191103.	3.0	26
50	Perovskite solar cells based on polyaniline derivatives as hole transport materials. JPhys Energy, 2019, 1, 015004.	5. 3	12
51	Polarization-Selective Excitation of Triplet State Coherences in CsPbI3 Perovskite Nanocrystals., 2019,		0
52	Three-Dimensional Superlattice of PbS Quantum Dots in Flakes. ACS Omega, 2018, 3, 2027-2032.	3.5	5
53	Thermal and electrochemical characterization of a new poly (ethylene oxide) copolymerâ€"gel electrolyte containing polyvalent ion pair of cobalt (CoII/III) or iron (FeII/III). Journal of Solid State Electrochemistry, 2018, 22, 1591-1605.	2.5	5
54	Pillaring and NiO _x co-catalyst loading as alternatives for the photoactivity enhancement of K ₂ Ti ₄ O ₉ towards water splitting. Sustainable Energy and Fuels, 2018, 2, 958-967.	4.9	13

#	Article	IF	CITATIONS
55	Surface Photovoltage Measurements on a Particle Tandem Photocatalyst for Overall Water Splitting. Nano Letters, 2018, 18, 805-810.	9.1	69
56	Hybrid Solar Cells: Effects of the Incorporation of Inorganic Nanoparticles into Bulk Heterojunction Organic Solar Cells., 2018, , 1-68.		3
57	Size Dependent Ultra-low Upconverted Lasing Threshold in CsPbBr3 Perovskites Quantum Dots. , 2018, , .		0
58	Application of Graphene and Graphene Derivatives/Oxide Nanomaterials for Solar Cells., 2018, , 395-437.		4
59	Two-Photon Absorption and Two-Photon-Induced Gain in Perovskite Quantum Dots. Journal of Physical Chemistry Letters, 2018, 9, 3478-3484.	4.6	82
60	Humidity-Induced Photoluminescence Hysteresis in Variable Cs/Br Ratio Hybrid Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 3463-3469.	4.6	50
61	Nonlinear spectroscopy in perovskite quantum dots. , 2018, , .		1
62	Special Section Guest Editorial: Perovskite-Based Solar Cells. Journal of Photonics for Energy, 2018, 8, 1.	1.3	0
63	Nano-FTIR investigation using synchrotron radiation on organic-inorganic hybrid perovskite films (Conference Presentation). , 2018, , .		0
64	Stabilizing Dendron-Modified Talc-Based Electrolyte for Quasi-Solid Dye-Sensitized Solar Cell. Electrochimica Acta, 2017, 228, 413-421.	5.2	7
65	Self-Organized Lead(II) Sulfide Quantum Dots Superlattice. MRS Advances, 2017, 2, 841-846.	0.9	4
66	Understanding perovskite formation through the intramolecular exchange method in ambient conditions. Journal of Photonics for Energy, 2017, 7, 022002.	1.3	12
67	Gel Electrolytes with Polyamidopyridine Dendron Modified Talc for Dye-Sensitized Solar Cells. ACS Applied Materials & Solar Cells. ACS Applied Materials & Solar Cells. ACS	8.0	8
68	Long-Term Stability of Dye-Sensitized Solar Cells Assembled with Cobalt Polymer Gel Electrolyte. Journal of Physical Chemistry C, 2017, 121, 17577-17585.	3.1	28
69	DNA-DODA-based polymer electrolytes for dye sensitized solar cells. Molecular Crystals and Liquid Crystals, 2017, 655, 131-141.	0.9	0
70	CÉLULAS SOLARES DE PEROVSKITAS: UMA NOVA TECNOLOGIA EMERGENTE. Quimica Nova, 2017, , .	0.3	1
71	Color tunable hybrid light-emitting diodes based on perovskite quantum dot/conjugated polymer. , 2017, , .		1
72	Organic Solar Cells with Boron- or Nitrogen-Doped Carbon Nanotubes in the P3HT : PCBM Photoactive Layer. Journal of Nanomaterials, 2016, 2016, 1-11.	2.7	9

#	Article	IF	Citations
73	Inverted organic solar cells using nanocellulose as substrate. Journal of Applied Polymer Science, 2016, 133, .	2.6	44
74	Enhancing Hematite Photoanode Activity for Water Oxidation by Incorporation of Reduced Graphene Oxide. ChemPhysChem, 2016, 17, 170-177.	2.1	13
7 5	Influence of DNA and DNA-PEDOT: PSS on dye sensitized solar cell performance. Molecular Crystals and Liquid Crystals, 2016, 627, 38-48.	0.9	11
76	Assembly Considerations for Dye-Sensitized Solar Modules with Polymer Gel Electrolyte. Industrial & Engineering Chemistry Research, 2016, 55, 10278-10285.	3.7	13
77	Understanding the Role of Reduced Graphene Oxide in the Electrolyte of Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2016, 120, 23368-23376.	3.1	35
78	Nanostructured hybrid materials based on reduced graphene oxide for solar energy conversion. , 2016, , .		3
79	Efficient Biexciton Interaction in Perovskite Quantum Dots Under Weak and Strong Confinement. ACS Nano, 2016, 10, 8603-8609.	14.6	190
80	Boosting the solar-light-driven methanol production through CO 2 photoreduction by loading Cu 2 O on TiO 2 -pillared K 2 Ti 4 O 9. Microporous and Mesoporous Materials, 2016, 234, 1-11.	4.4	37
81	Amineâ€Free Synthesis of Cesium Lead Halide Perovskite Quantum Dots for Efficient Lightâ€Emitting Diodes. Advanced Functional Materials, 2016, 26, 8757-8763.	14.9	344
82	Quasi-solid electrolyte with polyamidoamine dendron modified-talc applied to dye-sensitized solar cells. Journal of Power Sources, 2016, 325, 161-170.	7.8	9
83	Dye-sensitized solar cells employing polymers. Progress in Polymer Science, 2016, 59, 1-40.	24.7	136
84	Nanocrystalline anatase TiO ₂ /reduced graphene oxide composite films as photoanodes for photoelectrochemical water splitting studies: the role of reduced graphene oxide. Physical Chemistry Chemical Physics, 2016, 18, 2608-2616.	2.8	83
85	Study of photoelectrochemical water splitting using composite films based on TiO 2 nanoparticles and nitrogen or boron doped hollow carbon spheres as photoanodes. Journal of Molecular Catalysis A, 2016, 422, 165-174.	4.8	57
86	SOLAR CELLS SENSITIZED WITH NATURAL DYES: AN INTRODUCTORY EXPERIMENT ABOUT SOLAR ENERGY FOR UNDERGRADUATE STUDENTS. Quimica Nova, 2015, , .	0.3	6
87	Incorporation of nanocrystals with different dimensionalities in hybrid TiO2/ P 3 HT solar cells. Journal of Photonics for Energy, 2015, 5, 057407.	1.3	4
88	Investigation of the structural properties of poly(ethylene oxide) copolymer as gel polymer electrolyte and durability test in dye-sensitized solar cells. lonics, 2015, 21, 1771-1780.	2.4	16
89	Synthesis and characterization of a quaternary nanocomposite based on TiO ₂ /CdS/rGO/Pt and its application in the photoreduction of CO ₂ to methane under visible light. RSC Advances, 2015, 5, 33914-33922.	3.6	43
90	Enhanced photovoltaic performance of inverted hybrid bulk-heterojunction solar cells using TiO 2 /reduced graphene oxide films as electron transport layers. Journal of Photonics for Energy, 2015, 5, 057408.	1.3	66

#	Article	IF	Citations
91	Special Section Guest Editorial: Hybrid Organic-Inorganic Solar Cells. Journal of Photonics for Energy, 2015, 5, 057401.	1.3	1
92	Efficient Luminescence from Perovskite Quantum Dot Solids. ACS Applied Materials & Dot Solids & Dot Solids & Dot Solids & Dot Solids & Dot	8.0	481
93	Bio-inspired materials for electrochemical devices. , 2015, , .		1
94	The role of photonics in energy. Journal of Photonics for Energy, 2015, 5, 050997.	1.3	18
95	A novel nanocomposite based on TiO2/Cu2O/reduced graphene oxide with enhanced solar-light-driven photocatalytic activity. Applied Surface Science, 2015, 324, 419-431.	6.1	76
96	Hybrid silicon/P3HT solar cells based on an interfacial modification with a molecular thiophene layer. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2657-2661.	1.8	6
97	A comprehensive review of the application of chalcogenide nanoparticles in polymer solar cells. Nanoscale, 2014, 6, 6371-6397.	5.6	86
98	Synthesis and characterization of single wall carbon nanotube-grafted poly(3-hexylthiophene) and their nanocomposites with gold nanoparticles. Synthetic Metals, 2013, 176, 55-64.	3.9	12
99	On the behavior of the carboxyphenylterpyridine(8-quinolinolate) thiocyanatoruthenium(II) complex as a new black dye in TiO2 solar cells modified with carboxymethyl-beta-cyclodextrin. Inorganic Chemistry Communication, 2013, 36, 35-38.	3.9	10
100	ZnO nanostructures directly grown on paper and bacterial cellulose substrates without any surface modification layer. Chemical Communications, 2013, 49, 8096.	4.1	52
101	Enhancing in the performance of dye-sensitized solar cells by the incorporation of functionalized multi-walled carbon nanotubes into TiO2 films: The role of MWCNT addition. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 251, 78-84.	3.9	36
102	Photophysical and photovoltaic properties of a polymer–fullerene system containing CdSe nanoparticles. Synthetic Metals, 2013, 164, 69-77.	3.9	13
103	Incorporation of Inorganic Nanoparticles into Bulk Heterojunction Organic Solar Cells., 2013, , 1-47.		2
104	Thermoelectric properties of V2O5 thin films deposited by thermal evaporation. Applied Surface Science, 2013, 282, 590-594.	6.1	71
105	Synthesis of C60-containing Polymers by Ring-opening Metathesis Co-polymerization of a C60-cyclopentadiene Cycloadduct and N-(cycloheptyl)-endo-norbornene-5,6-dicarboximide and their Application in a Photovoltaic Device. Fullerenes Nanotubes and Carbon Nanostructures, 2013, 21, 198-212.	2.1	6
106	Hybrid photovoltaic devices based on chalcogenide nanostructures. , 2012, , .		3
107	Transparent Conducting Oxide-Free Dye-Sensitized Solar Cells Based Solely on Flexible Foils. Industrial & Engineering Chemistry Research, 2012, 51, 9700-9703.	3.7	5
108	Connecting the (quantum) dots: towards hybrid photovoltaic devices based on chalcogenide gels. Physical Chemistry Chemical Physics, 2012, 14, 15180.	2.8	16

#	Article	IF	Citations
109	Nanocomposites of gold and poly(3-hexylthiophene) containing fullerene moieties: Synthesis, characterization and application in solar cells. Journal of Power Sources, 2012, 215, 99-108.	7.8	18
110	Nanocomposites based on MWCNT and styrene–butadiene–styrene block copolymers: Effect of the preparation method on dispersion and polymer–filler interactions. Composites Science and Technology, 2012, 72, 1487-1492.	7.8	30
111	Tailoring the interface using thiophene small molecules in TiO2/P3HT hybrid solar cells. Physical Chemistry Chemical Physics, 2012, 14, 11990.	2.8	12
112	Preparação de nanopartÃculas de prata e ouro: um método simples para a introdução da nanociência em laboratório de ensino. Quimica Nova, 2012, 35, 1872-1878.	0.3	44
113	Cross-linked gel polymer electrolyte containing multi-wall carbon nanotubes for application in dye-sensitized solar cells. Journal of Power Sources, 2012, 208, 263-270.	7.8	65
114	Morphology and topography analysis of mesoporous titania templated by micrometric latex sphere arrays. Microporous and Mesoporous Materials, 2012, 152, 84-95.	4.4	4
115	Photoelectrochemical, photophysical and morphological studies of electrostatic layer-by-layer thin films based on poly(p-phenylenevinylene) and single-walled carbon nanotubes. Photochemical and Photobiological Sciences, 2011, 10, 1766.	2.9	4
116	Organic and Hybrid Solar Cells Based on Small Molecules. Green Energy and Technology, 2011, , 57-114.	0.6	0
117	Synthesis, characterization and introduction of a new ion-coordinating ruthenium sensitizer dye in quasi-solid state TiO2 solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 222, 185-191.	3.9	17
118	Conjugated copolymers based on poly(fluorenylene vinylene) derivatives containing push–pull units: Synthesis and characterization. Materials Chemistry and Physics, 2011, 130, 223-230.	4.0	5
119	Doping saturation in dye-sensitized solar cells based on ZnO:Ga nanostructured photoanodes. Electrochimica Acta, 2011, 56, 6503-6509.	5.2	36
120	Efficient Dye-Sensitized Solar Cells Based on the Combination of ZnO Nanorods and Microflowers. Journal of Nanoscience and Nanotechnology, 2010, 10, 6432-6438.	0.9	6
121	A polymer gel electrolyte composed of a poly(ethylene oxide) copolymer and the influence of its composition on the dynamics and performance of dye-sensitized solar cells. Journal of Power Sources, 2010, 195, 1246-1255.	7.8	71
122	Preparation of conducting polyanilines doped with Keggin-type polyoxometalates and their application as counter electrode in dye-sensitized solar cells. Journal of Materials Science, 2010, 45, 5054-5060.	3.7	35
123	Electrochromic devices based on poly(3-methylthiophene) and various secondary electrochromic materials. Solar Energy Materials and Solar Cells, 2010, 94, 1338-1345.	6.2	19
124	Preparation and characterization of core-shell electrodes for application in gel electrolyte-based dye-sensitized solar cells. Electrochimica Acta, 2010, 55, 1468-1474.	5.2	26
125	Polymer electrolytes for dye-sensitized solar cells. , 2010, , 381-430.		6
126	Investigation of new PPV-type polymeric materials containing fluorene and thiophene units and their application in organic solar cells. Synthetic Metals, 2010, 160, 1654-1661.	3.9	24

#	Article	IF	Citations
127	The effects of CdSe incorporation into bulk heterojunction solar cells. Journal of Materials Chemistry, 2010, 20, 4845.	6.7	89
128	Hybrid nanostructured solar cells based on the incorporation of inorganic nanoparticles in polymer-fullerene mixtures. , 2010, , .		3
129	A facile nonaqueous route for fabricating titania nanorods and their viability in quasi-solid-state dye-sensitized solar cells. Journal of Materials Chemistry, 2010, 20, 4425.	6.7	55
130	Stepped light-induced transient measurements of photocurrent and voltage in dye-sensitized solar cells based on ZnO and ZnO:Ga. Journal of Applied Physics, 2009, 106, .	2.5	11
131	Conductivity and mechanical properties of composites based on MWCNTs and styreneâ€butadieneâ€styrene blockâ,,¢ copolymers. Journal of Applied Polymer Science, 2009, 112, 3241-3248.	2.6	53
132	Synthesis and characterization of aniline copolymers containing carboxylic groups and their application as sensitizer and hole conductor in solar cells. Synthetic Metals, 2009, 159, 2348-2354.	3.9	34
133	New insights into dye-sensitized solar cells with polymer electrolytes. Journal of Materials Chemistry, 2009, 19, 5279.	6.7	264
134	Electrochemical and Structural Characterization of Polymer Gel Electrolytes Based on a PEO Copolymer and an Imidazolium-Based Ionic Liquid for Dye-Sensitized Solar Cells. ACS Applied Materials & Amp; Interfaces, 2009, 1, 2870-2877.	8.0	89
135	Single-Wall Carbon Nanotubes Chemically Modified with Cysteamine and Their Application in Polymer Solar Cells: Influence of the Chemical Modification on Device Performance. Journal of Nanoscience and Nanotechnology, 2009, 9, 5850-5859.	0.9	4
136	Solar module using dye-sensitized solar cells with a polymer electrolyte. Solar Energy Materials and Solar Cells, 2008, 92, 1110-1114.	6.2	45
137	The role of gel electrolyte composition in the kinetics and performance of dye-sensitized solar cells. Electrochimica Acta, 2008, 53, 7166-7172.	5.2	60
138	Synthesis and characterization of ZnO and ZnO:Ga films and their application in dye-sensitized solar cells. Dalton Transactions, 2008, , 1487.	3.3	26
139	Enhancement of photocurrent generation and open circuit voltage in dye-sensitized solar cells using Li+ trapping species in the gel electrolyte. Chemical Communications, 2008, , 1121.	4.1	64
140	Contrasting photoelectrochemical behaviour of two isomeric supramolecular dyes based on meso-tetra(pyridyl)porphyrin incorporating four ($1\frac{1}{4}$ 3-oxo)- triruthenium(iii) clusters. New Journal of Chemistry, 2008, 32, 1167.	2.8	23
141	Ga-Modified Nanostructured ZnO: Characterization and Application in Dye-Sensitized Solar Cells. Materials Science Forum, 2008, 591-593, 13-17.	0.3	1
142	Application of a composite polymer electrolyte based on montmorillonite in dye-sensitized solar cells. Journal of the Brazilian Chemical Society, 2008, 19, 688-696.	0.6	35
143	Hybrid ionic liquid and polymer electrolytes for nanocrystalline dye-sensitized TiO 2 solar cells. Proceedings of SPIE, 2007, , .	0.8	0
144	Polymer Solar Cells Using Single-Wall Carbon Nanotubes Modified with Thiophene Pedant Groups. Journal of Physical Chemistry C, 2007, 111, 18431-18438.	3.1	68

#	Article	IF	Citations
145	Dye-sensitized solar cells based on TiO2 nanotubes and a solid-state electrolyte. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 189, 153-160.	3.9	86
146	On the possibility of using embedded electrodes for the measurement of dielectric properties in organic coatings. Progress in Organic Coatings, 2007, 59, 186-191.	3.9	16
147	Dye-sensitized solar cell architecture based on indium–tin oxide nanowires coated with titanium dioxide. Scripta Materialia, 2007, 57, 277-280.	5.2	64
148	Carbon nanotube–polybithiophene photovoltaic devices with high open-circuit voltage. Physica Status Solidi - Rapid Research Letters, 2007, 1, R43-R45.	2.4	33
149	Electrochemical synthesis, characterization and photophysics of a poly(fluorenylene vinylene) derivative. Synthetic Metals, 2006, 156, 104-109.	3.9	19
150	Dye-sensitized solar cells and solar module using polymer electrolytes: Stability and performance investigations. International Journal of Photoenergy, 2006, 2006, 1-6.	2.5	15
151	Solid-state dye-sensitized solar cell: Improved performance and stability using a plasticized polymer electrolyte. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 181, 226-232.	3.9	69
152	Photoelectrochemical properties of poly(terthiophene) films modified with a fullerene derivative. Thin Solid Films, 2006, 515, 2644-2649.	1.8	8
153	Charge Recombination in CuPc/PTCDA Thin Films. Journal of Physical Chemistry B, 2005, 109, 11693-11696.	2.6	8
154	A highly efficient redox chromophore for simultaneous application in a photoelectrochemical dye sensitized solar cell and electrochromic devices. New Journal of Chemistry, 2005, 29, 320-324.	2.8	37
155	Conduction and photoelectrochemical properties of monomeric and electropolymerized tetraruthenated porphyrin films. Photochemical and Photobiological Sciences, 2005, 4, 359.	2.9	24
156	Polymers in dye sensitized solar cells: overview and perspectives. Coordination Chemistry Reviews, 2004, 248, 1455-1468.	18.8	409
157	Sensitization of TiO2 by Supramolecules Containing Zinc Porphyrins and Rutheniumâ [^] Polypyridyl Complexes. Inorganic Chemistry, 2004, 43, 396-398.	4.0	53
158	Photoelectrochemical properties of supramolecular species containing porphyrin and ruthenium complexes on TiO2 films. Photochemical and Photobiological Sciences, 2004, 3, 56.	2.9	38
159	Charge recombination dynamics in a polymer/fullerene bulk heterojunction studied by transient absorption spectroscopy. Synthetic Metals, 2003, 137, 1505-1506.	3.9	5
160	Excited state spectroscopy in polymer fullerene photovoltaic devices under operation conditions. Synthetic Metals, 2003, 139, 577-580.	3.9	9
161	Charge Recombination in Conjugated Polymer/Fullerene Blended Films Studied by Transient Absorption Spectroscopy. Journal of Physical Chemistry B, 2003, 107, 1567-1573.	2.6	197
162	Transient optical studies of charge recombination dynamics in a polymer/fullerene composite at room temperature. Applied Physics Letters, 2002, 81, 3001-3003.	3.3	189

#	Article	IF	CITATIONS
163	Solid-State and Flexible Dye-Sensitized TiO2Solar Cells:Â a Study by Electrochemical Impedance Spectroscopy. Journal of Physical Chemistry B, 2002, 106, 5925-5930.	2.6	300
164	<pre><title>Solid-state and flexible solar cells based on dye-sensitized TiO<formula><inf><roman>2</roman></inf></formula>: study by electrochemical impedance spectroscopy</title>., 2002,,.</pre>		0
165	Electron Transfer Dynamics in Dye Sensitized Nanocrystalline Solar Cells Using a Polymer Electrolyte. Journal of Physical Chemistry B, 2001, 105, 7517-7524.	2.6	155
166	Photoelectrochemical properties of PAni-DBSA/EPDM blends. Synthetic Metals, 2001, 121, 1569-1570.	3.9	6
167	Poly(ethylene oxide-co-epichlorohydrin)/Nal: a promising polymer electrolyte for photoelectrochemical cells. Solid State Ionics, 2001, 140, 327-335.	2.7	49
168	Solid-state photoelectrochemical cell using a polythiophene derivative as photoactive electrode. Solar Energy Materials and Solar Cells, 2001, 69, 315-323.	6.2	18
169	Dye-Sensitized Nanocrystalline Solar Cells Employing a Polymer Electrolyte. Advanced Materials, 2001, 13, 826-830.	21.0	368
170	All-polymeric electrochromic and photoelectrochemical devices: new advances. Electrochimica Acta, 2001, 46, 4243-4249.	5.2	94
171	A dye sensitized TiO2 photovoltaic cell constructed with an elastomeric electrolyte. Solar Energy Materials and Solar Cells, 2000, 61, 135-141.	6.2	84
172	Flexible photoelectrochemical devices based on conducting polymers. Synthetic Metals, 2000, 108, 151-157.	3.9	45
173	Enhanced photoresponse of poly(3-methylthiophene) supported on TiO2. Electrochemistry Communications, 1999, 1, 262-265.	4.7	12
174	Solid-state photoelectrochemical device using poly(o-methoxy aniline) as sensitizer and an ionic conductive elastomer as electrolyte. Synthetic Metals, 1999, 105, 23-27.	3.9	46
175	Células solares sensibilizadas por pontos quânticos. Quimica Nova, 0, , .	0.3	O
176	ETSâ€'10 Modified with CuxO Nanoparticles and Their Application for the Conversion of CO2 and Water into Oxygenates. Journal of the Brazilian Chemical Society, 0, , .	0.6	2
177	Optimization of standard polymer-fullerene solar cells. , 0, , .		O
178	Solution-processable Blue-Greenish Hybrid Polymeric/Perovskites Quantum Dots Light Emitting Diodes. , 0, , .		0
179	SÃntese e caracterização de grafeno e aplicação em eletrólitos poliméricos gel para células solares. , 0, , .		O
180	SÃNTESE E CARACTERIZAÇÃO DE PONTOS DE CARBONO PARA APLICAÇÃO EM CÉLULAS SOLARES., 0, , .		0

#	Article	IF	CITATIONS
181	Synchrotron radiation applied to the characterization of perovskite films: morphology, structure and composition. , 0, , .		O
182	Facets of multicomponent halide perovskites., 0,,.		O
183	Synchrotron Radiation Applied to the Characterization of Perovskite Films: Morphology, Structure and Composition. , 0 , , .		O
184	Formation and degradation dynamics in two-dimensional perovskites studied by in situ experiments. , 0, , \cdot		0
185	Addition of N-(2-Aminoethyl)naphthalimide and Mercaptopropionic Acid to Increase the Stability of CsFAMA Perovskite Solar Cells. Journal of the Brazilian Chemical Society, 0, , .	0.6	0