
Giuseppe B Suffritti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2796174/publications.pdf Version: 2024-02-01

CHISEDDE R SHEEDITTI

#	Article	IF	CITATIONS
1	The influence of the reverse M¶ssbauer effect on diffusion and desorption of hydrogen absorbed in metals. International Journal of Hydrogen Energy, 2019, 44, 18255-18264.	7.1	Ο
2	Reverse Mössbauer effect as a possible source of "hot―protons in hydrogen absorbing metals. International Journal of Hydrogen Energy, 2018, 43, 1725-1735.	7.1	2
3	High-temperature dynamic behavior in bulk liquid water: A molecular dynamics simulation study using the OPC and TIP4P-Ew potentials. Frontiers of Physics, 2018, 13, 1.	5.0	7
4	Computational Studies on the Effects of Pressure and Temperature on Zeolite Framework Structures. Advanced Science Letters, 2017, 23, 5824-5827.	0.2	1
5	A Combined Energy-Force Fitting Procedure to Develop DFT-Based Force Fields. Journal of Physical Chemistry C, 2016, 120, 26309-26319.	3.1	3
6	Reverse Mössbauer effect as a possible source of "hot―molecules absorbed in crystalline solids at low temperature. Journal of Chemical Physics, 2016, 145, 094110.	3.0	3
7	A lattice dynamics study of ZK-4 microporous material under different temperature and pressure conditions. Microporous and Mesoporous Materials, 2016, 226, 191-200.	4.4	1
8	InfiniCharges: A tool for generating partial charges via the simultaneous fit of multiframe electrostatic potential (ESP) and total dipole fluctuations (TDF). Computer Physics Communications, 2016, 200, 190-198.	7.5	2
9	A network of discrete events for the representation and analysis of diffusion dynamics. Journal of Chemical Physics, 2015, 143, 184115.	3.0	2
10	The interplay between dynamic heterogeneities and structure of bulk liquid water: A molecular dynamics simulation study. Journal of Chemical Physics, 2015, 142, 244507.	3.0	4
11	Partial Charges in Periodic Systems: Improving Electrostatic Potential (ESP) Fitting via Total Dipole Fluctuations and Multiframe Approaches. Journal of Chemical Theory and Computation, 2015, 11, 3829-3843.	5.3	21
12	Improving the acceptance in Monte Carlo simulations: Sampling through intermediate states. Journal of Computational Physics, 2015, 295, 556-568.	3.8	2
13	Fast and efficient optimization of Molecular Dynamics force fields for microporous materials: Bonded interactions via force matching. Microporous and Mesoporous Materials, 2014, 197, 339-347.	4.4	10
14	A coarse-grained method based on the analysis of short molecular dynamics trajectories for the simulation of non-Markovian dynamics of molecules adsorbed in microporous materials. Journal of Chemical Physics, 2014, 141, 074109.	3.0	2
15	Coarse-Graining of Adsorption in Microporous Materials: Relation between Occupancy Distributions and Local Partition Functions. Journal of Physical Chemistry C, 2014, 118, 28711-28719.	3.1	3
16	Combining off-lattice Monte Carlo and cellular automata for the simulation of hard-sphere systems. Physical Review E, 2014, 90, 023307.	2.1	1
17	Peculiar Structure of Water in Slightly Superhydrated Vermiculite Clay Studied by Car–Parrinello Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2014, 118, 7923-7931.	3.1	13
18	Thermodynamics of the one-dimensional parallel Kawasaki model: Exact solution and mean-field approximations. Physical Review E, 2014, 90, 022118.	2.1	0

#	Article	IF	CITATIONS
19	Distributions of single-molecule properties as tools for the study of dynamical heterogeneities in nanoconfined water. Journal of Physics Condensed Matter, 2014, 26, 155103.	1.8	4
20	The behavior of silicalite-1 under high pressure conditions studied by computational simulation. Structural Chemistry, 2013, 24, 909-915.	2.0	5
21	Development and Optimization of a New Force Field for Flexible Aluminosilicates, Enabling Fast Molecular Dynamics Simulations on Parallel Architectures. Journal of Physical Chemistry C, 2013, 117, 503-509.	3.1	22
22	Simulation study of CO2 adsorption properties in small Zeolite Imidazolate Frameworks. Chemical Physics Letters, 2013, 580, 99-102.	2.6	8
23	Synchronous equilibrium model for the diffusion of mutually exclusive particles in a heterogeneous lattice of adsorption sites. Physical Review E, 2013, 87, 063306.	2.1	4
24	Water Nanoconfined in Clays: The Structure of Na Vermiculite Revisited by Ab Initio Simulations. Journal of Physical Chemistry C, 2013, 117, 15583-15592.	3.1	8
25	A Grand-Canonical Monte Carlo Study of the Adsorption Properties of Argon Confined in ZIF-8: Local Thermodynamic Modeling. Journal of Physical Chemistry C, 2013, 117, 349-357.	3.1	11
26	Conciliating synchronicity with spatial discretization, exclusion, interactions, and detailed balance. Physical Review E, 2013, 88, 062114.	2.1	3
27	Chemical potential evaluation in NVT lattice-gas simulations. Journal of Chemical Physics, 2012, 137, 154106.	3.0	2
28	Computer simulations of dynamic crossover phenomena in nanoconfined water. Journal of Physics Condensed Matter, 2012, 24, 064110.	1.8	6
29	NMR studies of carbon dioxide and methane self-diffusion in ZIF-8 at elevated gas pressures. Adsorption, 2012, 18, 359-366.	3.0	59
30	Water Adsorbed in AlPO ₄ -5 and SSZ-24 Studied by Molecular Dynamics Simulation. Journal of Physical Chemistry C, 2012, 116, 11100-11109.	3.1	13
31	Force Field for Molecular Dynamics Computations in Flexible ZIF-8 Framework. Journal of Physical Chemistry C, 2012, 116, 933-938.	3.1	146
32	Computational research on memory effects in AlPO4-5 nanoporous material. Journal of Physics and Chemistry of Solids, 2012, 73, 797-802.	4.0	4
33	Estimation of Partial Charges in Small Zeolite Imidazolate Frameworks from Density Functional Theory Calculations. Journal of Chemical Theory and Computation, 2011, 7, 1575-1582.	5.3	25
34	A parallelizable block cellular automaton for the study of diffusion of binary mixtures containing CO2 in microporous materials. Journal of Chemical Physics, 2011, 135, 124110.	3.0	3
35	A molecular dynamics study and molecular level explanation of pressure dependence of ionic conductivity of potassium chloride in water. Physical Chemistry Chemical Physics, 2011, 13, 10877.	2.8	8
36	Speeding up simulation of diffusion in zeolites by a parallel synchronous kinetic Monte Carlo algorithm. Physical Review E, 2011, 83, 056705.	2.1	8

#	Article	IF	CITATIONS
37	The central cell model: A mesoscopic hopping model for the study of the displacement autocorrelation function. Journal of Chemical Physics, 2011, 134, 184109.	3.0	6
38	Diffusion of Water in Zeolites Na A and NaCa A: A Molecular Dynamics Simulation Study. Journal of Physical Chemistry C, 2010, 114, 18612-18621.	3.1	26
39	The behaviour of water confined in zeolites: molecular dynamics simulations versus experiment. Journal of Physics Condensed Matter, 2010, 22, 284106.	1.8	41
40	Effective interactions in multisite cells for adsorption in microporous materials. Journal of Chemical Physics, 2009, 130, 164701.	3.0	4
41	From thermodynamic cell models to partitioning cellular automata for diffusion in zeolites. I. Structure of the algorithm. Journal of Chemical Physics, 2009, 131, 234703.	3.0	11
42	A comment on the flexibility of framework in molecular dynamics simulations of zeolites. Microporous and Mesoporous Materials, 2009, 125, 160-168.	4.4	54
43	A study of the pressure-induced reversible amorphization of Xe containing-LTA zeolites by energy minimization technique. Microporous and Mesoporous Materials, 2009, 123, 30-38.	4.4	6
44	Diffusion of Water in Zeolites NaX and NaY Studied by Quasi-Elastic Neutron Scattering and Computer Simulation. Journal of Physical Chemistry C, 2009, 113, 12373-12379.	3.1	53
45	From thermodynamic cell models to partitioning cellular automata for diffusion in zeolites. II. Static and dynamic properties. Journal of Chemical Physics, 2009, 131, 234704.	3.0	10
46	Introducing a Cellular Automaton as an Empirical Model to Study Static and Dynamic Properties of Molecules Adsorbed in Zeolites. Journal of Physical Chemistry B, 2008, 112, 12444-12452.	2.6	13
47	Comment on "High-Accuracy Estimation of â€~Slow' Molecular Diffusion Rates in Zeolite Nanopores, Based on Free Energy Calculations at an Ultrahigh Temperature― Journal of Physical Chemistry C, 2008, 112, 17030-17031.	3.1	6
48	Dynamical Properties of Confined Water Nanoclusters: Simulation Study of Hydrated Zeolite NaA: Structural and Vibrational Properties. ACS Nano, 2008, 2, 1603-1614.	14.6	48
49	Modelling diffusion in zeolites with cellular automata. Studies in Surface Science and Catalysis, 2008, 174, 701-704.	1.5	3
50	Diffusion in tight confinement: A lattice-gas cellular automaton approach. I. Structural equilibrium properties. Journal of Chemical Physics, 2007, 126, 194709.	3.0	12
51	Diffusion in tight confinement: A lattice-gas cellular automaton approach. II. Transport properties. Journal of Chemical Physics, 2007, 126, 194710.	3.0	10
52	Molecular Dynamics Simulation Study of Superhydrated Perdeuterated Natrolite Using a New Interaction Potential Model. Journal of Physical Chemistry B, 2006, 110, 7513-7518.	2.6	15
53	A Lattice-Gas Cellular Automaton to Model Diffusion in Restricted Geometries. Journal of Physical Chemistry B, 2006, 110, 13554-13559.	2.6	21
54	Fractional diffusion interpretation of simulated single-file systems in microporous materials. Physical Review E, 2006, 74, 051112.	2.1	19

#	Article	IF	CITATIONS
55	Molecular dynamics simulation of anomalous diffusion of one-dimensional water molecule chains in Li-ABW zeolite. Microporous and Mesoporous Materials, 2005, 86, 166-175.	4.4	32
56	Understanding Diffusion in Confined Systems:  Methane in a ZK4 Molecular Sieve. A Molecular Dynamics Simulation Study. Journal of Physical Chemistry B, 2005, 109, 18081-18087.	2.6	23
57	Amorphization of calcined LTA zeolites at high pressure: a computational study. Microporous and Mesoporous Materials, 2004, 69, 127-134.	4.4	22
58	Dynamical behavior of one-dimensional water molecule chains in zeolites: Nanosecond time-scale molecular dynamics simulations of bikitaite. Journal of Chemical Physics, 2004, 120, 9233-9244.	3.0	51
59	Diffusion Anomaly as a Function of Molecular Length of Linear Molecules:Â Levitation Effect. Journal of the American Chemical Society, 2003, 125, 7116-7123.	13.7	64
60	Behavior of Water in the Hydrophobic Zeolite Silicalite at Different Temperatures. A Molecular Dynamics Study. Journal of Physical Chemistry B, 2003, 107, 4426-4436.	2.6	102
61	Comment on "Does lattice vibration drive diffusion in zeolites?―[J. Chem. Phys. 114, 3776 (2001)]. Journal of Chemical Physics, 2003, 118, 3439-3440.	3.0	11
62	Application of the Wolf method for the evaluation of Coulombic interactions to complex condensed matter systems: Aluminosilicates and water. Journal of Chemical Physics, 2001, 114, 7980-7988.	3.0	83
63	Statics and Dynamics of Ethane Molecules in AlPO4-5:Â A Molecular Dynamics Simulation Study. Journal of the American Chemical Society, 2001, 123, 5069-5074.	13.7	44
64	An effective harmonic potential for aluminophosphate molecular sieves: application to AlPO4-5. Microporous and Mesoporous Materials, 2001, 42, 103-111.	4.4	17
65	Two- and N-step correlated models for the analysis of molecular dynamics trajectories of linear molecules in silicalite. Journal of Chemical Physics, 2000, 113, 7588-7592.	3.0	9
66	Application of the two-step model to the diffusion of linear diatomic and triatomic molecules in silicalite. Physical Chemistry Chemical Physics, 2000, 2, 1455-1463.	2.8	19
67	Molecular dynamics simulation of an activated transfer reaction in zeolites. Journal of Chemical Physics, 1999, 111, 5529-5543.	3.0	11
68	"Two-step―model of molecular diffusion in silicalite. Journal of Chemical Physics, 1999, 110, 1163-1172.	3.0	40
69	Recombination Reactions and Diffusive Properties of Diatomic Molecules in Two Different Microporous Structures:  Silicalite and ZK4. Journal of Physical Chemistry B, 1999, 103, 8141-8152.	2.6	8
70	A classical molecular dynamics study of recombination reactions in a microporous solid. Journal of Chemical Physics, 1998, 109, 2865-2873.	3.0	8
71	Structure and Dynamics of Zeolites Investigated by Molecular Dynamics. Chemical Reviews, 1997, 97, 2845-2878.	47.7	250
72	Molecular-dynamics calculations of thermodynamic properties of metastable alloys. Physical Review B, 1997, 55, 837-842.	3.2	57

#	Article	IF	CITATIONS
73	Diffusion and vibrational relaxation of a diatomic molecule in the pore network of a pure silica zeolite: A molecular dynamics study. Journal of Chemical Physics, 1996, 105, 5586-5594.	3.0	36
74	Atom pair potential for molecular dynamics simulations of structural and dynamical properties of aluminosilicates: test on silicalite and anhydrous Na-A and Ca-A zeolites and comparison with experimental data. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 525.	1.7	37
75	Simulation of growth of Ni-Zr interfacial amorphous regions under nonequilibrium conditions. Physical Review B, 1994, 50, 2850-2857.	3.2	33
76	Molecular dynamics investigation of the diffusion of methane in a cubic symmetry zeolite of type ZK4. Chemical Physics Letters, 1994, 223, 355-362.	2.6	48
77	Molecular dynamics simulations of diffusion in a cubic symmetry zeolite. Studies in Surface Science and Catalysis, 1994, , 2107-2113.	1.5	7
78	A molecular dynamics study of diffusion of methane in silicalite molecular sieve at high dilution. Chemical Physics Letters, 1992, 191, 553-560.	2.6	36
79	Molecular dynamics studies on zeolites. Part 5.—Discussion of the structural changes of silicalite. Journal of the Chemical Society, Faraday Transactions, 1991, 87, 1657-1663.	1.7	37
80	A potential for molecular dynamics simulations of structural and dynamic properties of hydrate aluminosilicates. Materials Chemistry and Physics, 1991, 29, 357-367.	4.0	16
81	Molecular dynamics studies on zeolites. 4. Diffusion of methane in silicalite. The Journal of Physical Chemistry, 1990, 94, 4329-4334.	2.9	168
82	Molecular dynamics studies on zeolites. II: A simple model for silicates applied to anhydrous natrolite. Zeolites, 1987, 7, 522-527.	0.5	61
83	An implemented potential of non-rigid water molecules for molecular dynamics simulations. Chemical Physics Letters, 1986, 127, 456-461.	2.6	15
84	A method for correcting empirical potentials. Application to water molecule Computational and Theoretical Chemistry, 1985, 120, 201-206.	1.5	4
85	A theoretical investigation on the role of solvent in solvolytic reactions. Part 5. Fluoromethane in methane. Journal of the Chemical Society Perkin Transactions II, 1983, , 997.	0.9	5
86	Use of anisotropic atom-atom potential functions in lattice-dynamical calculations for solid nitrogen. Molecular Physics, 1978, 35, 1659-1667.	1.7	24
87	Derivation of a quotient group in symmetry operations. Computers & Chemistry, 1977, 1, 215-220.	1.2	2
88	Lattice-dynamical calculations on solid nitrogen. Chemical Physics Letters, 1976, 40, 210-214.	2.6	13
89	Lattice-Dynamical calculations on some aromatic fluoro derivatives. Chemical Physics Letters, 1976, 39, 14-18.	2.6	16
90	Lattice-dynamical evaluation of cell parameters of some hydrocarbons at various temperatures. Chemical Physics Letters, 1975, 35, 17-20.	2.6	16

#	Article	IF	CITATIONS
91	Thermodynamic functions for crystals of "rigid―hydrocarbon molecules: A derivation via the Born-von Karman procedure. Chemical Physics, 1975, 8, 136-146.	1.9	32
92	Thermal parameters of 11,11-dimethyltricyclo [4,4,1,01,6] undeca-2,4,7,9-tetraene: A lattice-dynamical discussion. Chemical Physics Letters, 1974, 26, 301-304.	2.6	16
93	Lattice dynamics in crystals of â€~rigid' hydrocarbons. Chemical Physics Letters, 1973, 20, 23-28.	2.6	17
94	Latticeâ€dynamical calculations on some rigid organic molecules. Journal of Chemical Physics, 1973, 59, 5088-5101.	3.0	73