Gregory S Barsh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2796068/publications.pdf

Version: 2024-02-01

76 papers

6,388 citations

30 h-index 56 g-index

83 all docs 83 docs citations

83 times ranked 8004 citing authors

#	Article	IF	CITATIONS
1	Mitochondrial transcription factor A is necessary for mtDNA maintance and embryogenesis in mice. Nature Genetics, 1998, 18, 231-236.	21.4	1,377
2	Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. Journal of Comparative Neurology, 1998, 402, 442-459.	1.6	783
3	Neomorphic agouti mutations in obese yellow mice. Nature Genetics, 1994, 8, 59-65.	21.4	434
4	Dilated cardiomyopathy and atrioventricular conduction blocks induced by heart-specific inactivation of mitochondrial DNA gene expression. Nature Genetics, 1999, 21, 133-137.	21.4	393
5	Genetic approaches to studying energy balance: perception and integration. Nature Reviews Genetics, 2002, 3, 589-600.	16.3	361
6	Obesity, diabetes, and neoplasia in yellow <i>A</i> ^{vy} /―mice: ectopic expression of the <i>agouti</i> gene. FASEB Journal, 1994, 8, 479-488.	0.5	323
7	A \hat{I}^2 -Defensin Mutation Causes Black Coat Color in Domestic Dogs. Science, 2007, 318, 1418-1423.	12.6	311
8	The mouse mahogany locus encodes a transmembrane form of human attractin. Nature, 1999, 398, 152-156.	27.8	194
9	Melanocortin 1 receptor variation in the domestic dog. Mammalian Genome, 2000, 11 , 24 - 30 .	2,2	194
10	Modeling 3D Facial Shape from DNA. PLoS Genetics, 2014, 10, e1004224.	3.5	190
11	A single mouse gene encodes the mitochondrial transcription factor A and a testis–specific nuclear HMG-box protein. Nature Genetics, 1996, 13, 296-302.	21.4	145
12	Genetic Architecture of Skin and Eye Color in an African-European Admixed Population. PLoS Genetics, 2013, 9, e1003372.	3.5	137
13	A biochemical function for attractin in agouti-induced pigmentation and obesity. Nature Genetics, 2001, 27, 40-47.	21.4	129
14	Specifying and Sustaining Pigmentation Patterns in Domestic and Wild Cats. Science, 2012, 337, 1536-1541.	12.6	110
15	What Controls Variation in Human Skin Color?. PLoS Biology, 2003, 1, e27.	5.6	104
16	Guidelines for Genome-Wide Association Studies. PLoS Genetics, 2012, 8, e1002812.	3.5	88
17	Structures of the Agouti Signaling Protein. Journal of Molecular Biology, 2005, 346, 1059-1070.	4.2	77
18	Aberrant Inclusion of a Poison Exon Causes Dravet Syndrome and Related SCN1A-Associated Genetic Epilepsies. American Journal of Human Genetics, 2018, 103, 1022-1029.	6.2	76

#	Article	IF	Citations
19	Down-Regulation of Mitochondrial Transcription Factor a During Spermatogenesis in Humans. Human Molecular Genetics, 1997, 6, 185-1991.	2.9	75
20	Biochemical and Genetic Studies of Pigment-Type Switching. Pigment Cell & Melanoma Research, 2000, 13, 48-53.	3. 6	66
21	Genetics of Pigmentation in Dogs and Cats. Annual Review of Animal Biosciences, 2013, 1, 125-156.	7.4	65
22	Association of an Agouti allele with fawn or sable coat color in domestic dogs. Mammalian Genome, 2005, 16, 262-272.	2.2	59
23	Genetic regulation of OAS1 nonsense-mediated decay underlies association with COVID-19 hospitalization in patients of European and African ancestries. Nature Genetics, 2022, 54, 1103-1116.	21.4	54
24	The Interaction of Agouti Signal Protein and Melanocyte Stimulating Hormone to Regulate Melanin Formation in Mammals. Pigment Cell & Melanoma Research, 1996, 9, 191-203.	3.6	51
25	Agouti signaling protein and other factors modulating differentiation and proliferation of immortal melanoblasts. Developmental Dynamics, 2001, 221, 373-379.	1.8	46
26	Structure and chromosomal localization of the mouse mitochondrial transcription factor a gene (Tfam). Mammalian Genome, 1997, 8, 139-140.	2.2	43
27	Distribution of Mahogany/Attractin mRNA in the rat central nervous system. FEBS Letters, 1999, 462, 101-107.	2.8	41
28	A Hox-Embedded Long Noncoding RNA: Is It All Hot Air?. PLoS Genetics, 2016, 12, e1006485.	3. 5	38
29	Down-regulation of Melanocortin Receptor Signaling Mediated by the Amino Terminus of Agouti Protein in XenopusMelanophores. Journal of Biological Chemistry, 1999, 274, 15837-15846.	3.4	34
30	Molecular and Functional Analysis of Human \hat{l}^2 -Defensin 3 Action at Melanocortin Receptors. Chemistry and Biology, 2013, 20, 784-795.	6.0	30
31	Dominant Red Coat Color in Holstein Cattle Is Associated with a Missense Mutation in the Coatomer Protein Complex, Subunit Alpha (COPA) Gene. PLoS ONE, 2015, 10, e0128969.	2.5	30
32	Molecular Pharmacology of Agouti Protein <i>in Vitro</i> and <i>in Vivo</i> . Annals of the New York Academy of Sciences, 1999, 885, 143-152.	3.8	28
33	How Hair Gets Its Pigment. Cell, 2007, 130, 779-781.	28.9	26
34	Genomic sequencing identifies secondary findings in a cohort of parent study participants. Genetics in Medicine, 2018, 20, 1635-1643.	2.4	24
35	Dog colour patterns explained by modular promoters of ancient canid origin. Nature Ecology and Evolution, 2021, 5, 1415-1423.	7.8	24
36	Epigenetic models developed for plains zebras predict age in domestic horses and endangered equids. Communications Biology, 2021, 4, 1412.	4.4	23

#	Article	IF	CITATIONS
37	Developmental genetics of color pattern establishment in cats. Nature Communications, 2021, 12, 5127.	12.8	19
38	Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. Journal of Comparative Neurology, 1998, 402, 442-459.	1.6	19
39	Aberrant regulation of a poison exon caused by a non-coding variant in a mouse model of Scn1a-associated epileptic encephalopathy. PLoS Genetics, 2021, 17, e1009195.	3.5	18
40	Population structure, inbreeding and stripe pattern abnormalities in plains zebras. Molecular Ecology, 2021, 30, 379-390.	3.9	17
41	De novo mutations in the GTP/GDP-binding region of RALA, a RAS-like small GTPase, cause intellectual disability and developmental delay. PLoS Genetics, 2018, 14, e1007671.	3.5	16
42	High frequency of an otherwise rare phenotype in a small and isolated tiger population. Proceedings of the National Academy of Sciences of the United States of America, $2021,118,.$	7.1	15
43	GENETIC AND BIOCHEMICAL STUDIES OF THE AGOUTI–ATTRACTIN SYSTEM. Journal of Receptor and Signal Transduction Research, 2002, 22, 63-77.	2.5	14
44	Bringing PLOS Genetics Editors to Preprint Servers. PLoS Genetics, 2016, 12, e1006448.	3.5	12
45	Neuroendocrine Regulation by the Agouti/Agrp-Melanocortin System. Endocrine Research, 2000, 26, 571-571.	1.2	11
46	Tabby pattern genetics – a whole new breed of cat. Pigment Cell and Melanoma Research, 2010, 23, 514-516.	3.3	10
47	PLOS Genetics Data Sharing Policy: In Pursuit of Functional Utility. PLoS Genetics, 2015, 11, e1005716.	3.5	10
48	A gene–diet interaction controlling relative intake of dietary carbohydrates and fats. Molecular Metabolism, 2022, 58, 101442.	6.5	7
49	Electrostatic Similarity Analysis of Human β-Defensin Binding in the Melanocortin System. Biophysical Journal, 2015, 109, 1946-1958.	0.5	6
50	PEA15 loss of function and defective cerebral development in the domestic cat. PLoS Genetics, 2020, 16, e1008671.	3.5	4
51	Whole-genome sequences shed light on the demographic history and contemporary genetic erosion of free-ranging jaguar (Panthera onca) populations. Journal of Genetics and Genomics, 2022, 49, 77-80.	3.9	4
52	Gene trap insertional mutagenesis in mice: new vectors and germ line mutations in two novel genes. , 1999, 8, 451-458.		3
53	Response—How the Gray Wolf Got Its Color. Science, 2009, 325, 34-34.	12.6	3
54	Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area., 1998, 402, 442.		3

#	Article	IF	CITATIONS
55	Return of raw data in genomic testing and research: ownership, partnership, and risk–benefit. Genetics in Medicine, 2020, 22, 12-14.	2.4	2
56	Melanoma to Vitiligo: The Melanocyte in Biology & Medicine–Joint Montagna Symposium on the Biology of Skin/PanAmerican Society for Pigment Cell Research Annual Meeting. Journal of Investigative Dermatology, 2020, 140, 269-274.	0.7	2
57	The Plight of Muntaser Ibrahim. PLoS Genetics, 2019, 15, e1008100.	3.5	1
58	Evaluating the strength of genetic results: Risks and responsibilities. PLoS Genetics, 2019, 15, e1008437.	3 . 5	1
59	Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. , 1998, 402, 442.		1
60	David R. Cox 1946–2013. Nature Genetics, 2013, 45, 716-716.	21.4	0
61	The Language of Genetics In the Interviews of Jane Gitschier. PLoS Genetics, 2016, 12, e1006115.	3.5	0
62	Doubling down on forensic twin studies. PLoS Genetics, 2018, 14, e1007831.	3.5	0
63	2018 PLOS Genetics Research Prize: Bundling, stabilizing, organizingâ€"The orchestration of acentriolar spindle assembly by microtubule motor proteins. PLoS Genetics, 2018, 14, e1007649.	3.5	0
64	Making room for opinions. PLoS Genetics, 2019, 15, e1008015.	3.5	0
65	Mixed methods. PLoS Genetics, 2020, 16, e1008950.	3.5	0
66	A Decad(e) of Reasons to Contribute to a PLOS Community-Run Journal. PLoS Genetics, 2015, 11, e1005557.	3 . 5	0
67	Kingdom Come. PLoS Genetics, 2020, 16, e1009178.	3.5	0
68	Expanding human variation at PLOS Genetics. PLoS Genetics, 2022, 18, e1010070.	3.5	0
69	Title is missing!. , 2021, 17, e1009195.		0
70	Title is missing!., 2021, 17, e1009195.		0
71	Title is missing!. , 2021, 17, e1009195.		0
72	Title is missing!. , 2021, 17, e1009195.		0

#	Article	IF	CITATIONS
73	PEA15 loss of function and defective cerebral development in the domestic cat., 2020, 16, e1008671.		O
74	PEA15 loss of function and defective cerebral development in the domestic cat., 2020, 16, e1008671.		0
75	PEA15 loss of function and defective cerebral development in the domestic cat., 2020, 16, e1008671.		O
76	PEA15 loss of function and defective cerebral development in the domestic cat., 2020, 16, e1008671.		0