
Scott M Sternson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2794815/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nature Neuroscience, 2011, 14, 351-355.	14.8	926
2	The subcellular organization of neocortical excitatory connections. Nature, 2009, 457, 1142-1145.	27.8	903
3	Deconstruction of a neural circuit for hunger. Nature, 2012, 488, 172-177.	27.8	779
4	A FLEX Switch Targets Channelrhodopsin-2 to Multiple Cell Types for Imaging and Long-Range Circuit Mapping. Journal of Neuroscience, 2008, 28, 7025-7030.	3.6	591
5	Neurons for hunger and thirst transmit a negative-valence teaching signal. Nature, 2015, 521, 180-185.	27.8	536
6	Parallel, Redundant Circuit Organization for Homeostatic Control of Feeding Behavior. Cell, 2013, 155, 1337-1350.	28.9	495
7	Leptin targets in the mouse brain. Journal of Comparative Neurology, 2009, 514, 518-532.	1.6	417
8	Chemogenetic Tools to Interrogate Brain Functions. Annual Review of Neuroscience, 2014, 37, 387-407.	10.7	412
9	Dissecting glucose signalling with diversity-oriented synthesis and small-molecule microarrays. Nature, 2002, 416, 653-657.	27.8	383
10	Chemogenetic Synaptic Silencing of Neural Circuits Localizes a Hypothalamus→Midbrain Pathway for Feeding Behavior. Neuron, 2014, 82, 797-808.	8.1	378
11	Hunger States Switch a Flip-Flop Memory Circuit via a Synaptic AMPK-Dependent Positive Feedback Loop. Cell, 2011, 146, 992-1003.	28.9	369
12	Regulation of neuronal input transformations by tunable dendritic inhibition. Nature Neuroscience, 2012, 15, 423-430.	14.8	357
13	Reconstruction of 1,000 Projection Neurons Reveals New Cell Types and Organization of Long-Range Connectivity in the Mouse Brain. Cell, 2019, 179, 268-281.e13.	28.9	352
14	Leptin Mediates the Increase in Blood Pressure Associated with Obesity. Cell, 2014, 159, 1404-1416.	28.9	288
15	Topographic mapping of VMH → arcuate nucleus microcircuits and their reorganization by fasting. Nature Neuroscience, 2005, 8, 1356-1363.	14.8	278
16	Chemical and Genetic Engineering of Selective Ion Channel–Ligand Interactions. Science, 2011, 333, 1292-1296.	12.6	260
17	Hypothalamic Survival Circuits: Blueprints for Purposive Behaviors. Neuron, 2013, 77, 810-824.	8.1	241
18	Three Pillars for the Neural Control of Appetite. Annual Review of Physiology, 2017, 79, 401-423.	13.1	211

SCOTT M STERNSON

#	Article	IF	CITATIONS
19	Cell type-specific transcriptomics of hypothalamic energy-sensing neuron responses to weight-loss. ELife, 2015, 4, .	6.0	188
20	Selective esterase–ester pair for targeting small molecules with cellular specificity. Proceedings of the United States of America, 2012, 109, 4756-4761.	7.1	148
21	Synthesis of 7200 Small Molecules Based on a Substructural Analysis of the Histone Deacetylase Inhibitors Trichostatin and Trapoxin. Organic Letters, 2001, 3, 4239-4242.	4.6	140
22	Optogenetics: 10 years after ChR2 in neurons—views from the community. Nature Neuroscience, 2015, 18, 1202-1212.	14.8	122
23	Ultrapotent chemogenetics for research and potential clinical applications. Science, 2019, 364, .	12.6	119
24	Behavioral state coding by molecularly defined paraventricular hypothalamic cell type ensembles. Science, 2020, 370, .	12.6	104
25	Automatic reconstruction of 3D neuron structures using a graph-augmented deformable model. Bioinformatics, 2010, 26, i38-i46.	4.1	100
26	Adeno-Associated Viral Vectors for Mapping, Monitoring, and Manipulating Neural Circuits. Human Gene Therapy, 2011, 22, 669-677.	2.7	97
27	Chemogenetic Tools for Causal Cellular and Neuronal Biology. Physiological Reviews, 2018, 98, 391-418.	28.8	97
28	Neural circuits and motivational processes for hunger. Current Opinion in Neurobiology, 2013, 23, 353-360.	4.2	77
29	Near-Perfect Synaptic Integration by Na v 1.7 in Hypothalamic Neurons Regulates Body Weight. Cell, 2016, 165, 1749-1761.	28.9	77
30	A genetically specified connectomics approach applied to long-range feeding regulatory circuits. Nature Neuroscience, 2014, 17, 1830-1839.	14.8	74
31	EASI-FISH for thick tissue defines lateral hypothalamus spatio-molecular organization. Cell, 2021, 184, 6361-6377.e24.	28.9	72
32	Splitâ~'Pool Synthesis of 1,3-Dioxanes Leading to Arrayed Stock Solutions of Single Compounds Sufficient for Multiple Phenotypic and Protein-Binding Assays. Journal of the American Chemical Society, 2001, 123, 1740-1747.	13.7	68
33	Agouti-Related Protein Neuron Circuits That Regulate Appetite. Neuroendocrinology, 2014, 100, 95-102.	2.5	49
34	Hindbrain Double-Negative Feedback Mediates Palatability-Guided Food and Water Consumption. Cell, 2020, 182, 1589-1605.e22.	28.9	49
35	An Emerging Technology Framework for the Neurobiology of Appetite. Cell Metabolism, 2016, 23, 234-253.	16.2	48
36	Modular Synthesis and Preliminary Biological Evaluation of Stereochemically Diverse 1,3-Dioxanes. Chemistry and Biology, 2004, 11, 1279-1291.	6.0	32

SCOTT M STERNSON

#	Article	IF	CITATIONS
37	An acid- and base-stable o-nitrobenzyl photolabile linker for solid phase organic synthesis. Tetrahedron Letters, 1998, 39, 7451-7454.	1.4	28
38	Hunger or thirst state uncertainty is resolved by outcome evaluation in medial prefrontal cortex to guide decision-making. Nature Neuroscience, 2021, 24, 907-912.	14.8	28
39	Exploring internal state-coding across the rodent brain. Current Opinion in Neurobiology, 2020, 65, 20-26.	4.2	15
40	Cell type-specific pharmacology of NMDA receptors using masked MK801. ELife, 2015, 4, .	6.0	15
41	Hunger: The carrot and the stick. Molecular Metabolism, 2016, 5, 1-2.	6.5	11
42	Chemogenetics: drug-controlled gene therapies for neural circuit disorders. Cell & Gene Therapy Insights, 2020, 6, 1079-1094.	0.1	9
43	Let them eat fat. Nature, 2011, 477, 166-167.	27.8	5
44	Applying the Brakes: When to Stop Eating. Neuron, 2015, 88, 440-441.	8.1	4
45	Seeing the forest for the trees in obesity. Nature Metabolism, 2020, 2, 661-662.	11.9	2
46	Exercise molecule burns away hunger. Nature, 2022, 606, 655-656.	27.8	2
47	Neuron Transplantation Partially Reverses an Obesity Disorder in Mice. Cell Metabolism, 2012, 15, 133-134.	16.2	1
48	Raphe Circuits on the Menu. Cell, 2017, 170, 409-410.	28.9	0