
Charles Chuah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2794574/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Validation and refinement of a RUNX1 mutation-associated gene expression signature in blast crisis chronic myeloid leukemia. Leukemia, 2022, 36, 892-896.	7.2	2
2	Application of High Throughput Technologies in the Development of Acute Myeloid Leukemia Therapy: Challenges and Progress. International Journal of Molecular Sciences, 2022, 23, 2863.	4.1	1
3	Bosutinib versus imatinib for newly diagnosed chronic phase chronic myeloid leukemia: final results from the BFORE trial. Leukemia, 2022, 36, 1825-1833.	7.2	43
4	Simvastatin enhances the efficacy of nilotinib in chronic myeloid leukaemia by post-translational modification and drug transporter modulation. Anti-Cancer Drugs, 2021, 32, 526-536.	1.4	2
5	Efficacy and safety of bosutinib versus imatinib for newly diagnosed chronic myeloid leukemia in the Asian subpopulation of the phase 3 BFORE trial. International Journal of Hematology, 2021, 114, 65-78.	1.6	9
6	Effective Killing of Acute Myeloid Leukemia by TIM-3 Targeted Chimeric Antigen Receptor T Cells. Molecular Cancer Therapeutics, 2021, 20, 1702-1712.	4.1	14
7	Ponatinib dose-ranging study in chronic-phase chronic myeloid leukemia: a randomized, open-label phase 2 clinical trial. Blood, 2021, 138, 2042-2050.	1.4	95
8	Post Hoc Analysis of Responses to Ponatinib in Patients with Chronic-Phase Chronic Myeloid Leukemia (CP-CML) By Baseline <i>BCR-ABL1</i> Level and Baseline Mutation Status in the Optic Trial. Blood, 2021, 138, 307-307.	1.4	3
9	Dose Modification Dynamics of Ponatinib in Patients with Chronic-Phase Chronic Myeloid Leukemia (CP-CML) from the PACE and Optic Trials. Blood, 2021, 138, 2550-2550.	1.4	8
10	An in vivo genome-wide CRISPR screen identifies the RNA-binding protein Staufen2 as a key regulator of myeloid leukemia. Nature Cancer, 2020, 1, 410-422.	13.2	37
11	An integrative model of pathway convergence in genetically heterogeneous blast crisis chronic myeloid leukemia. Blood, 2020, 135, 2337-2353.	1.4	49
12	SRSF1 mediates cytokine-induced impaired imatinib sensitivity in chronic myeloid leukemia. Leukemia, 2020, 34, 1787-1798.	7.2	12
13	Efficacy and Safety of Ponatinib (PON) in Patients with Chronic-Phase Chronic Myeloid Leukemia (CP-CML) Who Failed One or More Second-Generation (2G) Tyrosine Kinase Inhibitors (TKIs): Analyses Based on PACE and Optic. Blood, 2020, 136, 43-44.	1.4	11
14	Bosutinib (BOS) Versus Imatinib for Newly Diagnosed Chronic Phase (CP) Chronic Myeloid Leukemia (CML): Final 5-Year Results from the Bfore Trial. Blood, 2020, 136, 41-42.	1.4	27
15	<i>BIM</i> deletion polymorphism profiling complements prognostic values of risk scores in imatinib-treated Asian chronic myeloid leukemia patients. Leukemia and Lymphoma, 2019, 60, 234-237.	1.3	5
16	Lysosome Inhibition by Mefloquine Preferentially Enhances the Cytotoxic Effects of Tyrosine Kinase Inhibitors in Blast Phase Chronic Myeloid Leukemia. Translational Oncology, 2019, 12, 1221-1228.	3.7	13
17	Laying the foundation for genomically-based risk assessment in chronic myeloid leukemia. Leukemia, 2019, 33, 1835-1850.	7.2	97
18	Results from HARMONY: an open-label, multicenter, 2-arm, phase 1b, dose-finding study assessing the safety and efficacy of the oral combination of ruxolitinib and buparlisib in patients with myelofibrosis. Haematologica, 2019, 104, e551-e554.	3.5	27

CHARLES CHUAH

#	Article	IF	CITATIONS
19	Patient-reported outcomes in the phase 3 BFORE trial of bosutinib versus imatinib for newly diagnosed chronic phase chronic myeloid leukemia. Journal of Cancer Research and Clinical Oncology, 2019, 145, 1589-1599.	2.5	21
20	Optimization of Selective Mitogen-Activated Protein Kinase Interacting Kinases 1 and 2 Inhibitors for the Treatment of Blast Crisis Leukemia. Journal of Medicinal Chemistry, 2018, 61, 4348-4369.	6.4	37
21	Ponatinib efficacy and safety in Philadelphia chromosome–positive leukemia: final 5-year results of the phase 2 PACE trial. Blood, 2018, 132, 393-404.	1.4	392
22	Bosutinib Versus Imatinib for Newly Diagnosed Chronic Myeloid Leukemia: Results From the Randomized BFORE Trial. Journal of Clinical Oncology, 2018, 36, 231-237.	1.6	356
23	The arginase inhibitor Nωâ^'hydroxyâ^'norâ^'arginine (norâ^'NOHA) induces apoptosis in leukemic cells specifically under hypoxic conditions but CRISPR/Cas9 excludes arginase 2 (ARG2) as the functional target. PLoS ONE, 2018, 13, e0205254.	2.5	8
24	Bosutinib vs imatinib for newly diagnosed chronic myeloid leukemia in the BFORE trial: 24-month follow-up Journal of Clinical Oncology, 2018, 36, 7002-7002.	1.6	13
25	Overall survival with ponatinib versus allogeneic stem cell transplantation in Philadelphia chromosomeâ€positive leukemias with the T315I mutation. Cancer, 2017, 123, 2875-2880.	4.1	79
26	Phase 1 dose escalation multicenter trial of pracinostat alone and in combination with azacitidine in patients with advanced hematologic malignancies. Cancer, 2017, 123, 4851-4859.	4.1	45
27	Bosutinib (BOS) versus imatinib (IM) for newly diagnosed chronic myeloid leukemia (CML): Initial results from the BFORE trial Journal of Clinical Oncology, 2017, 35, 7002-7002.	1.6	6
28	Bosutinib Vs Imatinib for Newly Diagnosed Chronic Myeloid Leukemia (CML) in the BFORE Trial: 18 Month Follow-up. Blood, 2017, 130, 896-896.	1.4	6
29	Ponatinib versus imatinib for newly diagnosed chronic myeloid leukaemia: an international, randomised, open-label, phase 3 trial. Lancet Oncology, The, 2016, 17, 612-621.	10.7	214
30	CD98-Mediated Adhesive Signaling Enables the Establishment and Propagation of Acute Myelogenous Leukemia. Cancer Cell, 2016, 30, 792-805.	16.8	86
31	Final 5-Year Study Results of DASISION: The Dasatinib Versus Imatinib Study in Treatment-NaÃ ⁻ ve Chronic Myeloid Leukemia Patients Trial. Journal of Clinical Oncology, 2016, 34, 2333-2340.	1.6	724
32	Inhibition of isoprenylcysteine carboxylmethyltransferase augments BCR-ABL1 tyrosine kinase inhibition-induced apoptosis in chronic myeloid leukemia. Experimental Hematology, 2016, 44, 189-193.e2.	0.4	11
33	Tetraspanin 3 Is Required for the Development and Propagation of Acute Myelogenous Leukemia. Cell Stem Cell, 2015, 17, 152-164.	11.1	58
34	Efficacy and Safety of Ponatinib in CP-CML Patients By Number of Prior Tyrosine Kinase Inhibitors: 4-Year Follow-up of the Phase 2 PACE Trial. Blood, 2015, 126, 4025-4025.	1.4	7
35	The Impact of Ponatinib Versus Allogeneic Stem Cell Transplant (SCT) on Outcomes in Patients with Chronic Myeloid Leukemia (CML) or Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia (Ph+ ALL) with the T315I Mutation. Blood, 2015, 126, 480-480.	1.4	5
36	An Open-Label, Multicenter, 2-Arm, Dose-Finding, Phase 1b Study of the Combination of Ruxolitinib and Buparlisib (BKM120) in Patients with Myelofibrosis: Results from HARMONY Study. Blood, 2015, 126, 827-827.	1.4	17

CHARLES CHUAH

#	Article	IF	CITATIONS
37	Efficacy and safety of ponatinib in heavily pretreated leukemia patients in the PACE trial: 3-year results Journal of Clinical Oncology, 2015, 33, e18052-e18052.	1.6	2
38	Pyrvinium selectively targets blast phase-chronic myeloid leukemia through inhibition of mitochondrial respiration. Oncotarget, 2015, 6, 33769-33780.	1.8	40
39	Evaluation of the Benefit/Risk Profile of Ponatinib in CP-CML Patients over Time: 4-Year Follow-up of the Phase 2 PACE Study. Blood, 2015, 126, 5142-5142.	1.4	0
40	Lis1 regulates asymmetric division in hematopoietic stem cells and in leukemia. Nature Genetics, 2014, 46, 245-252.	21.4	97
41	BCR-ABL1 Compound Mutations Combining Key Kinase Domain Positions Confer Clinical Resistance to Ponatinib in Ph Chromosome-Positive Leukemia. Cancer Cell, 2014, 26, 428-442.	16.8	292
42	Final Study Results of the Phase 3 Dasatinib Versus Imatinib in Newly Diagnosed Chronic Myeloid Leukemia in Chronic Phase (CML-CP) Trial (DASISION, CA180-056). Blood, 2014, 124, 152-152.	1.4	55
43	Epic: A Phase 3 Trial of Ponatinib Compared with Imatinib in Patients with Newly Diagnosed Chronic Myeloid Leukemia in Chronic Phase (CP-CML). Blood, 2014, 124, 519-519.	1.4	30
44	EPIC: A phase III trial of ponatinib (PON) versus imatinib (IM) in patients (pts) with newly diagnosed CP-CML. Journal of Clinical Oncology, 2014, 32, 7023-7023.	1.6	3
45	Ponatinib (PON) in patients (pts) with Philadelphia chromosome-positive (Ph+) leukemias resistant or intolerant to dasatinib or nilotinib, or with the T315I mutation: Longer-term follow up of the PACE trial Journal of Clinical Oncology, 2014, 32, 7081-7081.	1.6	10
46	Clinical impact of dose modification and dose intensity on response to ponatinib (PON) in patients (pts) with Philadelphia chromosome-positive (Ph+) leukemias Journal of Clinical Oncology, 2014, 32, 7084-7084.	1.6	13
47	Ponatinib In Heavily Pretreated Patients With Chronic Phase Chronic Myeloid Leukemia (CP-CML): Management Of Adverse Events (AEs). Blood, 2013, 122, 1496-1496.	1.4	4
48	Dual Specific Inhibitors Of The BCR-ABL and MNK Kinases As Potential Therapeutics For Blast Crisis Chronic Myeloid Leukemia. Blood, 2013, 122, 2702-2702.	1.4	1
49	Efficacy and Safety Of Ponatinib Following Failure Of Nilotinib In Patients With Chronic Phase Chronic Myeloid Leukemia (CP-CML) In The PACE Trial. Blood, 2013, 122, 2738-2738.	1.4	2
50	Clinical Impact Of Dose Modification On Response To Ponatinib In Patients With Chronic Phase Chronic Myeloid Leukemia (CP-CML). Blood, 2013, 122, 4007-4007.	1.4	6
51	Post hoc analysis of sustained efficacy/tolerability of ≥12 cycles of omacetaxine mepesuccinate in chronic myeloid leukemia (CML) Journal of Clinical Oncology, 2013, 31, 7066-7066.	1.6	0
52	The BIM Deletion Polymorphism: A Paradigm Of a Permissive Interaction Between Germline and Acquired TKI Resistance Factors In Chronic Myeloid Leukemia. Blood, 2013, 122, 3977-3977.	1.4	0
53	Final Analysis Of The Efficacy and Tolerability Of Subcutaneous Omacetaxine Mepesuccinate, ≥24 Months After First Dose, In Patients With Chronic Phase (CP) Or Accelerated Phase (AP) Chronic Myeloid Leukemia (CML). Blood, 2013, 122, 2743-2743.	1.4	5
54	The BCL-2 Inhibitor ABT-199 Enhances Imatinib-Induced Cell Death In Chronic Phase CML Progenitors. Blood, 2013, 122, 3978-3978.	1.4	1

CHARLES CHUAH

#	Article	IF	CITATIONS
55	Multivariate Analyses of the Clinical and Molecular Parameters Associated with Efficacy and Safety in Patients with Chronic Myeloid Leukemia (CML) and Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia (Ph+ ALL) Treated with Ponatinib in the PACE Trial. Blood, 2012, 120, 3747-3747.	1.4	6
56	Efficacy and Safety of Ponatinib According to Prior Approved Tyrosine Kinase Inhibitor (TKI) Therapy in Patients with Chronic Myeloid Leukemia in Chronic Phase (CP-CML): Results From the PACE Trial. Blood, 2012, 120, 3749-3749.	1.4	2
57	The EUTOS Score Is Highly Predictive for Clinical Outcome and Survival in Asian Patients with Early Chronic Phase Chronic Myeloid Leukemia Treated with Imatinib. Blood, 2012, 120, 3758-3758.	1.4	5
58	PACE: A pivotal phase II trial of ponatinib in patients with CML and Ph+ALL resistant or intolerant to dasatinib or nilotinib, or with the T315I mutation Journal of Clinical Oncology, 2012, 30, 6503-6503.	1.6	5
59	Initial Findings From the PACE Trial: A Pivotal Phase 2 Study of Ponatinib in Patients with CML and Ph+ ALL Resistant or Intolerant to Dasatinib or Nilotinib, or with the T315I Mutation. Blood, 2011, 118, 109-109.	1.4	27
60	Dasatinib and Imatinib-Induced Reductions in BCR-ABL Transcript Levels Below 10% At 3 Months Are Associated with Improved Responses in Patients with Newly Diagnosed Chronic Myeloid Leukemia in Chronic Phase (CML-CP): Analysis of Molecular Response Kinetics in the DASISION Trial. Blood, 2011, 118, 2767-2767.	1.4	12
61	Physiologic Hypoxia Promotes Maintenance of CML Stem Cells Despite Effective BCR-ABL Inhibition. Blood, 2011, 118, 450-450.	1.4	0
62	A Common Deletion Polymorphism in the BIM Gene Contributes to Intrinsic Imatinib Resistance in Chronic Myelogenous Leukemia. Blood, 2011, 118, 1666-1666.	1.4	0
63	Phase I Study of the Oral Histone Deacetylase Inhibitor SB939 In Patients with Advanced Hematologic Malignancies. Blood, 2010, 116, 3292-3292.	1.4	8
64	The Presence of the BCR-ABL T315I Mutation In Chronic Phase Chronic Myelogenous Leukemia Resistant to Tyrosine Kinase Inhibitors Profoundly Compromises Overall Survival and Progression Free Survival. Preliminary Results of a Matched Pair Analysis Blood, 2010, 116, 3410-3410.	1.4	2
65	Use of Immunoglobulin Infusions in the Management of Bortezomib-Induced Peripheral Neuropathy in Multiple Myeloma Blood, 2006, 108, 5097-5097.	1.4	3
66	Factors Influencing Responsiveness to Bortezomib in Patients with Multiple Myeloma Suggest a Possible Role for Host Immunocompetency Blood, 2006, 108, 5100-5100.	1.4	0
67	High Response and Complete Remission Rates in Relapsed/Refractory Multiple Myeloma Treated with Bortezomib, Thalidomide, Dexamethasone and Zoledronic Acid (VTD-Z) Combination Therapy Blood, 2005, 106, 5127-5127.	1.4	1
68	The Chronic Anemia. , 2004, , 571-580.		0
69	Nutritional Anemias. , 2004, , 559-570.		Ο