Gaylia Jean Harry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2792049/publications.pdf

Version: 2024-02-01

87888 79698 6,480 131 38 73 citations g-index h-index papers 141 141 141 8465 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Integrating Environment and Aging Research: Opportunities for Synergy and Acceleration. Frontiers in Aging Neuroscience, 2022, 14, 824921.	3.4	14
2	Roadbumps at the Crossroads of Integrating Behavioral and In Vitro Approaches for Neurotoxicity Assessment. Frontiers in Toxicology, 2022, 4, 812863.	3.1	3
3	Cannabinoids. Advances in Neurotoxicology, 2022, , .	1.9	O
4	Advanced glycation end-products disrupt brain microvascular endothelial cell barrier: The role of mitochondria and oxidative stress. Microvascular Research, 2021, 133, 104098.	2.5	22
5	Trimethyltin as a Model to Explore Mechanisms of Selective Neuronal Death, Glial Reactivity, and Repair., 2021,, 1-31.		O
6	Assessing Neurotoxicant-Induced Inflammation in the Central Nervous System: Cytokine mRNA with Immunostaining of Morphology. Neuromethods, 2021, , 277-304.	0.3	0
7	Assessing the Association of Mitochondrial Function and Inflammasome Activation in Murine Macrophages Exposed to Select Mitotoxic Tri-Organotin Compounds. Environmental Health Perspectives, 2021, 129, 47015.	6.0	9
8	Microglia in Neurodegenerative Eventsâ€"An Initiator or a Significant Other?. International Journal of Molecular Sciences, 2021, 22, 5818.	4.1	19
9	Microglia: A Critical Cell for Neurodevelopment. , 2021, , 1-20.		O
10	Mitochondrial Stress Assay and Glycolytic Rate Assay in Microglia Using Agilent Seahorse Extracellular Flux Analyzers. Neuromethods, 2021, , 305-324.	0.3	0
11	Mitochondrial-related effects of pentabromophenol, tetrabromobisphenol A, and triphenyl phosphate on murine BV-2 microglia cells. Chemosphere, 2020, 255, 126919.	8.2	16
12	An association between mitochondria and microglia effector function: what do we think we know?. Neuroimmunology and Neuroinflammation, 2020, 2020, 150-165.	1.4	10
13	Interâ€Î±â€inhibitor deficiency in the mouse is associated with alterations in anxietyâ€ike behavior, exploration and social approach. Genes, Brain and Behavior, 2019, 18, e12505.	2.2	17
14	Age-Related Decrease in Tyrosine Hydroxylase Immunoreactivity in the Substantia Nigra and Region-Specific Changes in Microglia Morphology in HIV-1 Tg Rats. Neurotoxicity Research, 2019, 36, 563-582.	2.7	3
15	An introduction to innate immunity in the central nervous system. Advances in Neurotoxicology, 2019, 3, 1-34.	1.9	1
16	An Evaluation of Neurotoxicity Following Fluoride Exposure from Gestational Through Adult Ages in Long-Evans Hooded Rats. Neurotoxicity Research, 2018, 34, 781-798.	2.7	35
17	Humanin Prevents Age-Related Cognitive Decline in Mice and is Associated with Improved Cognitive Age in Humans. Scientific Reports, 2018, 8, 14212.	3.3	74
18	InÂVitro Systems in Neurotoxicological Studies. , 2018, , 451-461.		0

#	Article	IF	CITATIONS
19	The viral protein gp120 decreases the acetylation of neuronal tubulin: potential mechanism of neurotoxicity. Journal of Neurochemistry, 2017, 141, 606-613.	3.9	31
20	Gestational exposure to perfluorooctanoic acid (PFOA): Alterations in motor related behaviors. NeuroToxicology, 2017, 58, 110-119.	3.0	20
21	Association Between Microglia, Inflammatory Factors, and Complement with Loss of Hippocampal Mossy Fiber Synapses Induced by Trimethyltin. Neurotoxicity Research, 2016, 30, 53-66.	2.7	17
22	Comparison of Metal Levels between Postmortem Brain and Ventricular Fluid in Alzheimer's Disease and Nondemented Elderly Controls. Toxicological Sciences, 2016, 150, 292-300.	3.1	72
23	Microglial <scp>M1/M2</scp> polarization and metabolic states. British Journal of Pharmacology, 2016, 173, 649-665.	5.4	1,308
24	Microglia: Features of Polarization and Aging. Oxidative Stress in Applied Basic Research and Clinical Practice, 2016, , 47-66.	0.4	0
25	Developmental Neurotoxicity of 3,3',4,4'-Tetrachloroazobenzene with Thyroxine Deficit: Sensitivity of Glia and Dentate Granule Neurons in the Absence of Behavioral Changes. Toxics, 2014, 2, 496-532.	3.7	18
26	Autotaxin Downregulates LPSâ€Induced Microglia Activation and Proâ€Inflammatory Cytokines Production. Journal of Cellular Biochemistry, 2014, 115, 2123-2132.	2.6	46
27	Developmental Vascularization, Neurogenesis, Myelination, and Astrogliogenesis., 2014, , 193-221.		1
28	In Vivo Molecular Markers for Pro-inflammatory Cytokine M1 Stage and Resident Microglia in Trimethyltin-Induced Hippocampal Injury. Neurotoxicity Research, 2014, 25, 45-56.	2.7	33
29	Microglia: Neuroprotective and Neurodestructive Properties. , 2014, , 109-132.		2
30	When Human Immunodeficiency Virus Meets Chemokines and Microglia: Neuroprotection or Neurodegeneration?. Journal of NeuroImmune Pharmacology, 2013, 8, 118-131.	4.1	25
31	Microglia during development and aging. , 2013, 139, 313-326.		376
32	Interleukin-6 (IL-6) receptor/IL-6 fusion protein (Hyper IL-6) effects on the neonatal mouse brain: Possible role for IL-6 trans-signaling in brain development and functional neurobehavioral outcomes. Brain, Behavior, and Immunity, 2013, 27, 42-53.	4.1	15
33	SDF-1 $\hat{l}\pm$ and LPA modulate microglia potassium channels through rho gtpases to regulate cell morphology. Glia, 2013, 61, 1620-1628.	4.9	23
34	Evaluation of N-butylbenzenesulfonamide (NBBS) neurotoxicity in Sprague-Dawley male rats following 27-day oral exposure. NeuroToxicology, 2012, 33, 1528-1535.	3.0	14
35	Activated microglia proliferate at neurites of mutant huntingtin-expressing neurons. Neurobiology of Aging, 2012, 33, 621.e17-621.e33.	3.1	58
36	Microglia in the developing brain: A potential target with lifetime effects. NeuroToxicology, 2012, 33, 191-206.	3.0	204

#	Article	IF	CITATIONS
37	Neuroinflammation: A need to understand microglia as resident cells of the developing brain. NeuroToxicology, 2012, 33, 558-559.	3.0	11
38	Bilateral Common Carotid Artery Ligation Transiently Changes Brain Lipid Metabolism in Rats. Neurochemical Research, 2012, 37, 1490-1498.	3.3	9
39	Exposure to an organometal compound stimulates adipokine and cytokine expression in white adipose tissue. Cytokine, 2011, 53, 355-362.	3.2	10
40	Interleukin (IL)-1 and IL-6 regulation of neural progenitor cell proliferation with hippocampal injury: Differential regulatory pathways in the subgranular zone (SGZ) of the adolescent and mature mouse brain. Brain, Behavior, and Immunity, 2011, 25, 850-862.	4.1	61
41	Voluntary exercise protects hippocampal neurons from trimethyltin injury: Possible role of interleukin-6 to modulate tumor necrosis factor receptor-mediated neurotoxicity. Brain, Behavior, and Immunity, 2011, 25, 1063-1077.	4.1	73
42	Features of Microglia and Neuroinflammation Relevant to Environmental Exposure and Neurotoxicity. International Journal of Environmental Research and Public Health, 2011, 8, 2980-3018.	2.6	242
43	Imaging Upregulated Brain Arachidonic Acid Metabolism in HIV-1 Transgenic Rats. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 486-493.	4.3	32
44	Injury-Induced Neurogenesis: Consideration of Resident Microglia as Supportive of Neural Progenitor Cells. Neurotoxicity Research, 2011, 19, 341-352.	2.7	28
45	Altered Cerebellar Development in Nuclear Receptor TAK1/TR4 Null Mice Is Associated with Deficits in GLAST+ Glia, Alterations in Social Behavior, Motor Learning, Startle Reactivity, and Microglia. Cerebellum, 2010, 9, 310-323.	2.5	26
46	Increased excitotoxicity and neuroinflammatory markers in postmortem frontal cortex from bipolar disorder patients. Molecular Psychiatry, 2010, 15, 384-392.	7.9	385
47	Lifespan Profiles of Alzheimer's Disease-Associated Genes and Products in Monkeys and Mice. Journal of Alzheimer's Disease, 2009, 18, 211-230.	2.6	28
48	Isolation of rafts from mouse brain tissue by a detergent-free method. Journal of Lipid Research, 2009, 50, 759-767.	4.2	46
49	Raft aggregation with specific receptor recruitment is required for microglial phagocytosis of $A\hat{l}^2$ < sub>42 < /sub>. Glia, 2009, 57, 320-335.	4.9	22
50	IGF-1 and pAKT Signaling Promote Hippocampal CA1 Neuronal Survival Following Injury to Dentate Granule Cells. Neurotoxicity Research, 2009, 16, 280-292.	2.7	42
51	Heterogeneity of microglia and TNF signaling as determinants for neuronal death or survival. NeuroToxicology, 2009, 30, 785-793.	3.0	88
52	Tumor necrosis factor p55 and p75 receptors are involved in chemicalâ€induced apoptosis of dentate granule neurons. Journal of Neurochemistry, 2008, 106, 281-298.	3.9	60
53	The type 1 interleukin 1 receptor is not required for the death of murine hippocampal dentate granule cells and microglia activation. Brain Research, 2008, 1194, 8-20.	2.2	23
54	Neurogenesis and Brain Repair. , 2008, , 445-462.		2

#	Article	IF	Citations
55	G-protein Pathway Suppressor 2 (GPS2) Interacts with the Regulatory Factor X4 Variant 3 (RFX4_v3) and Functions as a Transcriptional Co-activator. Journal of Biological Chemistry, 2008, 283, 8580-8590.	3.4	24
56	Modeling Neonatal Thimerosal Exposure in Mice. Toxicological Sciences, 2008, 103, 416-416.	3.1	0
57	Neuroinflammation and microglia: considerations and approaches for neurotoxicity assessment. Expert Opinion on Drug Metabolism and Toxicology, 2008, 4, 1265-1277.	3.3	200
58	Co-localization and Distribution of Cerebral APP and SP1 and its Relationship to Amyloidogenesis. Journal of Alzheimer's Disease, 2008, 13, 71-80.	2.6	25
59	Neuroembryology and Neurogenesis. , 2008, , 131-143.		0
60	Ontogenetic Alterations in Molecular and Structural Correlates of Dendritic Growth after Developmental Exposure to Polychlorinated Biphenyls. Environmental Health Perspectives, 2007, 115, 556-563.	6.0	72
61	Leadâ€induced alterations of apoptosis and neurotrophic factor mRNA in the developing rat cortex, hippocampus, and cerebellum. Journal of Biochemical and Molecular Toxicology, 2007, 21, 265-272.	3.0	28
62	Diffuse White Matter Injury and Neurologic Outcomes of Infants Born Very Preterm in the 1990s. JOGNN - Journal of Obstetric, Gynecologic, and Neonatal Nursing, 2007, 36, 386-395.	0.5	11
63	Regional protein levels of cytosolic phospholipase A2 and cyclooxygenase-2 in Rhesus monkey brain as a function of age. Brain Research Bulletin, 2006, 69, 614-621.	3.0	13
64	Maternal infection and white matter toxicity. NeuroToxicology, 2006, 27, 658-670.	3.0	12
65	Molecular profiles of mRNA levels in laser capture microdissected murine hippocampal regions differentially responsive to TMT-induced cell death. Journal of Neurochemistry, 2005, 93, 206-220.	3.9	34
66	Interdisciplinary neurotoxicity inhalation studies: Carbon disulfide and carbonyl sulfide research in F344 rats. Toxicology and Applied Pharmacology, 2005, 207, 245-250.	2.8	20
67	Evaluation of neurotoxic potential by use ofin vitrosystems. Expert Opinion on Drug Metabolism and Toxicology, 2005, 1, 701-713.	3.3	38
68	Rat brain arachidonic acid metabolism is increased by a 6-day intracerebral ventricular infusion of bacterial lipopolysaccharide. Journal of Neurochemistry, 2004, 90, 255-255.	3.9	82
69	Neurotoxicity of carbonyl sulfide in F344 rats following inhalation exposure for up to 12 weeks. Toxicology and Applied Pharmacology, 2004, 200, 131-145.	2.8	35
70	Neurobehavioral assessment of mice after developmental AZT exposure. Neurotoxicology and Teratology, 2004, 26, 65-71.	2.4	4
71	Rat brain arachidonic acid metabolism is increased by a 6-day intracerebral ventricular infusion of bacterial lipopolysaccharide. Journal of Neurochemistry, 2004, 88, 1168-1178.	3.9	104
72	Mercury concentrations in brain and kidney following ethylmercury, methylmercury and Thimerosal administration to neonatal mice. Toxicology Letters, 2004, 154, 183-189.	0.8	55

#	Article	IF	CITATIONS
73	Schwann Cell Neurotoxicity. , 2004, , 41-59.		0
74	Alterations in cyclin A, B, and D1 in mouse dentate gyrus following TMT-induced hippocampal damage. Neurotoxicity Research, 2003, 5, 339-354.	2.7	14
75	Trimethyltin-induced neurogenesis in the murine hippocampus. Neurotoxicity Research, 2003, 5, 623-627.	2.7	42
76	Differential modulation of hippocampal chemical-induced injury response by ebselen, pentoxifylline, and TNF?-, IL-1?-, and IL-6-neutralizing antibodies. Journal of Neuroscience Research, 2003, 73, 526-536.	2.9	28
77	Carbon monoxide neurotoxicity: transient inhibition of avoidance response and delayed microglia reaction in the absence of neuronal death. Toxicology, 2003, 194, 51-63.	4.2	14
78	Dentate Gyrus: Alterations that Occur with Hippocampal Injury. NeuroToxicology, 2003, 24, 343-356.	3.0	71
79	Morphological Alterations and Elevations in Tumor Necrosis Factor-α, Interleukin (IL)-1α, and IL-6 in Mixed Glia Cultures Following Exposure to Trimethyltin: Modulation by Proinflammatory Cytokine Recombinant Proteins and Neutralizing Antibodies. Toxicology and Applied Pharmacology, 2002, 180, 205-218.	2.8	51
80	Differential patterns of nerve growth factor, brain-derived neurotrophic factor and neurotrophin-3 mRNA and protein levels in developing regions of rat brain. Neuroscience, 2001, 103, 739-761.	2.3	98
81	Methods to Identify and Characterize Developmental Neurotoxicity for Human Health Risk Assessment. III: Pharmacokinetic and Pharmacodynamic Considerations. Environmental Health Perspectives, 2001, 109, 101.	6.0	6
82	Neurodegeneration and glia response in rat hippocampus following nitro-L-arginine methyl ester (L-NAME). Neurotoxicity Research, 2001, 3, 307-319.	2.7	16
83	Neurotoxicant-induced elevation of adrenomedullin expression in hippocampus and glia cultures. Journal of Neuroscience Research, 2001, 66, 464-474.	2.9	19
84	Cytochrome P450 CYP2J9, a New Mouse Arachidonic Acid ω-1 Hydroxylase Predominantly Expressed in Brain. Journal of Biological Chemistry, 2001, 276, 25467-25479.	3.4	75
85	Chemical-induced hippocampal neurodegeneration and elevations in TNF?, TNF?, IL-1?, IP-10, and MCP-1 mRNA in osteopetrotic (op/op) mice. Journal of Neuroscience Research, 2000, 62, 146-155.	2.9	41
86	Age-Dependent Cytokine Responses: Trimethyltin Hippocampal Injury in Wild-Type, APOE Knockout, and APOE4 Mice. Brain, Behavior, and Immunity, 2000, 14, 288-304.	4.1	24
87	Pfiesteria Toxin and Learning Performance. Neurotoxicology and Teratology, 1999, 21, 215-221.	2.4	42
88	Effect of dexamethasone on elevated cytokine mRNA levels in chemical-induced hippocampal injury. Journal of Neuroscience Research, 1999, 57, 916-926.	2.9	38
89	Effect of dexamethasone on elevated cytokine mRNA levels in chemicalâ€induced hippocampal injury. Journal of Neuroscience Research, 1999, 57, 916-926.	2.9	1
90	Increase in brain stem cytokine mRNA levels as an early response to chemical-induced myelin edema. Journal of Neuroimmunology, 1998, 88, 154-164.	2.3	8

#	Article	IF	Citations
91	Glycine Modulates the Toxicity of Benzyl Acetate in F344 Rats. Toxicologic Pathology, 1998, 26, 395-402.	1.8	22
92	In Vitro Techniques for the Assessment of Neurotoxicity. Environmental Health Perspectives, 1998, 106, 131.	6.0	21
93	Cellular Localization and Temporal Elevation of Tumor Necrosis Factorâ€Î±, Interleukinâ€Îα, and Transforming Growth Factorâ€Î21 mRNA in Hippocampal Injury Response Induced by Trimethyltin. Journal of Neurochemistry, 1998, 71, 1577-1587.	3.9	81
94	Myelination, Dysmyelination, and Demyelination., 1998,, 87-115.		2
95	Leadâ€induced developmental changes in APâ€1 DNA binding in rat brain. International Journal of Developmental Neuroscience, 1997, 15, 321-328.	1.6	21
96	INDUCTION OF TUMOR NECROSIS FACTOR ALPHA IN CULTURED GLIAL CELLS BY TRIMETHYLTIN. Neurochemistry International, 1997, 30, 385-392.	3.8	24
97	Trimethyltin induces gelatinase B and urokinase in rat brain. Neuroscience Letters, 1997, 228, 147-150.	2.1	12
98	Persisting learning deficits in rats after exposure to Pfiesteria piscicida Environmental Health Perspectives, 1997, 105, 1320-1325.	6.0	47
99	Developmental Exposure to Lead Interferes with Glial and Neuronal Differential Gene Expression in the Rat Cerebellum. Toxicology and Applied Pharmacology, 1996, 138, 43-47.	2.8	76
100	Lead-Induced Alterations of Glial Fibrillary Acidic Protein (GFAP) in the Developing Rat Brain. Toxicology and Applied Pharmacology, 1996, 139, 84-93.	2.8	62
101	Exposure to lead-acetate modulates the developmental expression of myelin genes in the rat frontal lobe. International Journal of Developmental Neuroscience, 1995, 13, 639-644.	1.6	27
102	The Reproductive and Neural Toxicities of Acrylamide and Three Analogues in Swiss Mice, Evaluated Using the Continuous Breeding Protocol. Fundamental and Applied Toxicology, 1995, 27, 9-24.	1.8	55
103	Trimethyltin increases interleukin (IL)-lÎ \pm , IL-6 and tumor necrosis factor Î \pm mRNA levels in rat hippocampus. Journal of Neuroimmunology, 1995, 59, 65-75.	2.3	71
104	Sensitivity of adenosine triphosphatases in different brain regions to polychlorinated biphenyl congeners. Journal of Applied Toxicology, 1994, 14, 225-229.	2.8	37
105	Effect of Lead Acetate on Nitrite Production by Murine Brain Endothelial Cell Cultures. Toxicology and Applied Pharmacology, 1994, 126, 191-194.	2.8	31
106	Differential effects of polychlorinated biphenyl congeners on phosphoinositide hydrolysis and protein kinase C translocation in rat cerebellar granule cells. Brain Research, 1994, 662, 75-82.	2.2	97
107	Developmental profiles of ornithine decarboxylase activity in the hippocampus, neocortex and cerebellum: Modulation following lead exposure. International Journal of Developmental Neuroscience, 1994, 12, 25-30.	1.6	14
108	Trimethyltin-Induced c-fos Expression: Adolescent vs Neonatal Rat Hippocampus. Toxicology and Applied Pharmacology, 1993, 121, 99-102.	2.8	19

#	Article	IF	CITATIONS
109	Comparative Effects of Two Polychlorinated Biphenyl Congeners on Calcium Homeostasis in Rat Cerebellar Granule Cells. Toxicology and Applied Pharmacology, 1993, 123, 97-106.	2.8	153
110	Effects of Selected Neuroactive Chemicals on Calcium Transporting Systems in Rat Cerebellum and on Survival of Cerebellar Granule Cells. Fundamental and Applied Toxicology, 1993, 21, 308-316.	1.8	38
111	Correlations between developmental ornithine decarboxylase gene expression and enzyme activity in the rat brain. Developmental Brain Research, 1993, 71, 53-57.	1.7	15
112	Developmental changes in carbachol-stimulated inositolphosphate release in pigmented rat retina. Current Eye Research, 1993, 12, 439-449.	1.5	5
113	Effects of Selected Neuroactive Chemicals on Calcium Transporting Systems in Rat Cerebellum and on Survival of Cerebellar Granule Cells. Toxicological Sciences, 1993, 21, 308-316.	3.1	0
114	Acrylamide-induced alterations in axonal transport. Molecular Neurobiology, 1992, 6, 203-216.	4.0	17
115	Acrylamide exposure preferentially impairs axonal transport of glycoproteins in myelinated axons. Journal of Neuroscience Research, 1992, 31, 554-560.	2.9	22
116	Acrylamide-Induced Increases in Deposition of Axonally Transported Glycoproteins in Rat Sciatic Nerve. Journal of Neurochemistry, 1989, 52, 1240-1247.	3.9	21
117	Tellurium-Induced Neuropathy: Metabolic Alterations Associated with Demyelination and Remyelination in Rat Sciatic Nerve. Journal of Neurochemistry, 1989, 52, 938-945.	3.9	63
118	Colchicine-induced alterations in receptor-stimulated phosphoinositide hydrolysis in the rat hippocampus. Brain Research, 1989, 477, 308-313.	2.2	11
119	Ganglioside interactions with the dopaminergic system of rats. Journal of Neuroscience Research, 1988, 19, 88-93.	2.9	37
120	Role of dentate gyrus cells in retention of a radial arm maze task and sensitivity of rats to cholinergic drugs Behavioral Neuroscience, 1988, 102, 835-842.	1.2	22
121	Time-dependent neurobiological effects of colchicine administered directly into the hippocampus of rats. Brain Research, 1987, 408, 163-172.	2.2	55
122	Experiential factors in the expression of hypermotility produced by intradentate colchicine: Lack of effect of GM1 ganglioside on colchicine-induced loss of granule cells and mossy fibers. Journal of Neuroscience Research, 1987, 17, 410-416.	2.9	5
123	Axonal Transport Characteristics of Gangliosides in Sensory Axons of Rat Sciatic Nerve. Journal of Neurochemistry, 1987, 48, 1529-1536.	3.9	11
124	Pharmacological modification of DDT-induced tremor and hyperthermia in rats: Distributional factors. Psychopharmacology, 1986, 89, 278-83.	3.1	12
125	The effect of lead toxicity and milk deprivation on myelination in the rat. Toxicology and Applied Pharmacology, 1985, 77, 458-464.	2.8	29
126	The postnatal development of glial fibrillary acidic protein and neurofilament triplet proteins in rat brain stem. International Journal of Developmental Neuroscience, 1985, 3, 349-352.	1.6	18

#	Article	IF	CITATIONS
127	The use of synapsin I as a biochemical marker for neuronal damage by trimethyltin. Brain Research, 1985, 326, 9-18.	2.2	21
128	34 REGIONAL DISTRIBUTION OF TINS IN THE ADULT RAT BRAIN IN ALKYLTIN NEUROTOXICITY. Journal of Neuropathology and Experimental Neurology, 1983, 42, 316.	1.7	1
129	Effects of nicotine on the visual evoked response. Pharmacology Biochemistry and Behavior, 1982, 17, 915-920.	2.9	18
130	Neurotoxicology., 0,,.		0
131	The Neuroinflammatory Components of the Trimethyltin (TMT) Model of Hippocampal Neurodegeneration., 0,, 301-329.		2