Peter Walde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2790788/publications.pdf

Version: 2024-02-01

223 papers 11,179 citations

28274 55 h-index 97 g-index

239 all docs 239 docs citations

times ranked

239

9396 citing authors

#	Article	IF	CITATIONS
1	Giant Vesicles: Preparations and Applications. ChemBioChem, 2010, 11, 848-865.	2.6	624
2	Enzymes inside lipid vesicles: preparation, reactivity and applications. New Biotechnology, 2001, 18, 143-177.	2.7	599
3	Enzymatic reactions in confined environments. Nature Nanotechnology, 2016, 11, 409-420.	31.5	597
4	Autopoietic Self-Reproduction of Fatty Acid Vesicles. Journal of the American Chemical Society, 1994, 116, 11649-11654.	13.7	421
5	Lipid Vesicles as Membrane Models for Toxicological Assessment of Xenobiotics. Critical Reviews in Toxicology, 2008, 38, 1-11.	3.9	269
6	Water as the reaction medium in organic chemistry: from our worst enemy to our best friend. Chemical Science, 2021, 12, 4237-4266.	7.4	263
7	Fatty acid vesicles. Current Opinion in Colloid and Interface Science, 2007, 12, 75-80.	7.4	258
8	Oparin's Reactions Revisited: Enzymic Synthesis of Poly(adenylic acid) in Micelles and Self-Reproducing Vesicles. Journal of the American Chemical Society, 1994, 116, 7541-7547.	13.7	240
9	Lipid vesicles as possible intermediates in the origin of life. Current Opinion in Colloid and Interface Science, 1999, 4, 33-39.	7.4	235
10	From Self-Assembled Vesicles to Protocells. Cold Spring Harbor Perspectives in Biology, 2010, 2, a002170-a002170.	5. 5	205
11	Interaction of a lecithin microemulsion gel with human stratum corneum and its effect on transdermal transport. Journal of Controlled Release, 1997, 45, 131-140.	9.9	182
12	Growth and Transformation of Vesicles Studied by Ferritin Labeling and Cryotransmission Electron Microscopy. Journal of Physical Chemistry B, 2001, 105, 1056-1064.	2.6	149
13	Light microscopic investigations of the autocatalytic self-reproduction of giant vesicles. Journal of the American Chemical Society, 1995, 117, 1435-1436.	13.7	148
14	Thermoresponsive Dendronized Polymers. Macromolecules, 2008, 41, 3659-3667.	4.8	148
15	Matrix Effect in the Size Distribution of Fatty Acid Vesicles. Journal of Physical Chemistry B, 1998, 102, 10383-10390.	2.6	139
16	Lecithin Organogel as Matrix for Transdermal Transport of Drugs. Journal of Pharmaceutical Sciences, 1992, 81, 871-874.	3.3	136
17	From Decanoate Micelles to Decanoic Acid/Dodecylbenzenesulfonate Vesicles. Langmuir, 2005, 21, 6210-6219.	3.5	134
18	Building artificial cells and protocell models: Experimental approaches with lipid vesicles. BioEssays, 2010, 32, 296-303.	2.5	132

#	Article	IF	CITATIONS
19	Surfactant Assemblies and their Various Possible Roles for the Origin(S) of Life. Origins of Life and Evolution of Biospheres, 2006, 36, 109-150.	1.9	131
20	Tuning Polymer Thickness: Synthesis and Scaling Theory of Homologous Series of Dendronized Polymers. Journal of the American Chemical Society, 2009, 131, 11841-11854.	13.7	130
21	Self-replicating reverse micelles and chemical autopoiesis. Journal of the American Chemical Society, 1990, 112, 8200-8201.	13.7	129
22	Current Ideas about Prebiological Compartmentalization. Life, 2015, 5, 1239-1263.	2.4	125
23	Self-replicating micelles: aqueous micelles and enzymatically driven reactions in reverse micelles. Journal of the American Chemical Society, 1991, 113, 8204-8209.	13.7	118
24	Novel Method for Obtaining Homogeneous Giant Vesicles from a Monodisperse Water-in-Oil Emulsion Prepared with a Microfluidic Device. Langmuir, 2008, 24, 4581-4588.	3.5	115
25	Emergent properties arising from the assembly of amphiphiles. Artificial vesicle membranes as reaction promoters and regulators. Chemical Communications, 2014, 50, 10177-10197.	4.1	115
26	Phospholipid-based reverse micelles. Chemistry and Physics of Lipids, 1990, 53, 265-288.	3.2	113
27	Spectrophotometric quantification of horseradish peroxidase with o-phenylenediamine. Analytical Biochemistry, 2010, 407, 293-295.	2.4	112
28	Autopoietic Self-Reproduction of Chiral Fatty Acid Vesicles. Journal of the American Chemical Society, 1997, 119, 292-301.	13.7	108
29	Giant Vesicles as Biochemical Compartments:Â The Use of Microinjection Techniques. Langmuir, 1998, 14, 2712-2721.	3. 5	105
30	Electron Spin Resonance Study of the pH-Induced Transformation of Micelles to Vesicles in an Aqueous Oleic Acid/Oleate System. Langmuir, 2001, 17, 4223-4231.	3.5	105
31	Microinjection into giant vesicles and light microscopy investigation of enzyme-mediated vesicle transformations. Chemistry and Biology, 1996, 3, 105-111.	6.0	101
32	Sustained gastrointestinal activity of dendronized polymer–enzyme conjugates. Nature Chemistry, 2013, 5, 582-589.	13.6	92
33	Soft and dispersed interface-rich aqueous systems that promote and guide chemical reactions. Nature Reviews Chemistry, 2018, 2, 306-327.	30.2	92
34	Growth and shape transformations of giant phospholipid vesicles upon interaction with an aqueous oleic acid suspension. Chemistry and Physics of Lipids, 2009, 159, 67-76.	3.2	84
35	Thermodynamic and kinetic stability. Properties of micelles and vesicles formed by the decanoic acid/decanoate system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 213, 37-44.	4.7	83
36	Spectroscopic and kinetic studies of lipases solubilized in reverse micelles. Biochemistry, 1993, 32, 4029-4034.	2.5	82

#	Article	IF	CITATIONS
37	A Matrix Effect in Mixed Phospholipid/Fatty Acid Vesicle Formation. Journal of Physical Chemistry B, 1999, 103, 10910-10916.	2.6	80
38	A Fluorescently Labeled Dendronized Polymer–Enzyme Conjugate Carrying Multiple Copies of Two Different Types of Active Enzymes. Journal of the American Chemical Society, 2012, 134, 11392-11395.	13.7	80
39	Vesicles from docosahexaenoic acid. Colloids and Surfaces B: Biointerfaces, 2007, 54, 118-123.	5.0	72
40	A1H Nuclear Magnetic Resonance Method for Investigating the Phospholipase D-Catalyzed Hydrolysis of Phosphatidylcholine in Liposomes. Analytical Biochemistry, 1996, 240, 37-47.	2.4	71
41	Chemical and Biological Investigations of \hat{l}^2 -Oligoarginines. Chemistry and Biodiversity, 2004, 1, 65-97.	2.1	69
42	Interaction of α-and β-Oligoarginine-Acids and Amides with Anionic Lipid Vesicles:  A Mechanistic and Thermodynamic Study. Biochemistry, 2006, 45, 5817-5829.	2.5	69
43	Temperature-Sensitive Nonionic Vesicles Prepared from Span 80 (Sorbitan Monooleate). Langmuir, 2008, 24, 10762-10770.	3.5	69
44	Vesicles as Soft Templates for the Enzymatic Polymerization of Aniline. Langmuir, 2009, 25, 11390-11405.	3.5	69
45	Structure and activity of trypsin in reverse micelles. FEBS Journal, 1988, 173, 401-409.	0.2	68
46	Human Skin Irritation Studies of a Lecithin Microemulsion Gel and of Lecithin Liposomes. Skin Pharmacology and Physiology, 1996, 9, 124-129.	2.5	66
47	Preparation and Characterization of Vesicles from Mono-n-alkyl Phosphates and Phosphonates. Journal of Physical Chemistry B, 1997, 101, 7390-7397.	2.6	66
48	Kinetic studies of the interaction of fatty acids with phosphatidylcholine vesicles (liposomes). Colloids and Surfaces B: Biointerfaces, 2006, 48, 24-34.	5.0	64
49	A continuous assay for lipases in reverse micelles based on Fourier transform infrared spectroscopy. Biochemistry, 1989, 28, 3353-3360.	2.5	61
50	Enzyme-catalyzed chemical structure-controlling template polymerization. Soft Matter, 2011, 7, 316-331.	2.7	60
51	Refolding of Carbonic Anhydrase Assisted by 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine Liposomes. Biotechnology Progress, 1997, 13, 828-836.	2.6	58
52	Permeability Enhancement of Lipid Vesicles to Nucleotides by Use of Sodium Cholate:  Basic Studies and Application to an Enzyme-Catalyzed Reaction Occurring inside the Vesicles. Langmuir, 2002, 18, 1043-1050.	3.5	58
53	Liposome-Assisted Selective Polycondensation of \hat{l} ±-Amino Acids and Peptides. Macromolecules, 1999, 32, 7332-7334.	4.8	57
54	Sequential Immobilization of Enzymes in Microfluidic Channels for Cascade Reactions. ChemPlusChem, 2012, 77, 98-101.	2.8	57

#	Article	IF	Citations
55	Dependence of Lipase Activity on Water Content and Enzyme Concentration in Reverse Micelles. Biocatalysis, 1990, 4, 153-161.	0.9	56
56	Stereoselectivity Aspects in the Condensation of Racemic NCAâ^'Amino Acids in the Presence and Absence of Liposomes. Macromolecules, 2001, 34, 2443-2449.	4.8	56
57	Multinuclear NMR Investigation of Phosphatidylcholine Organogelsâ€. The Journal of Physical Chemistry, 1996, 100, 15211-15217.	2.9	55
58	Mechanistic aspects of the horseradish peroxidase-catalysed polymerisation of aniline in the presence of AOT vesicles as templates. RSC Advances, 2012, 2, 6478.	3.6	55
59	An Amphotericin B–Fluorescein Conjugate as a Powerful Probe for Biochemical Studies of the Membrane. Angewandte Chemie - International Edition, 2004, 43, 5181-5185.	13.8	53
60	Co-immobilization of enzymes with the help of a dendronized polymer and mesoporous silica nanoparticles. Journal of Materials Chemistry B, 2015, 3, 6174-6184.	5.8	53
61	Novel immobilized liposomal glucose oxidase system using the channel protein OmpF and catalase. Biotechnology and Bioengineering, 2005, 90, 231-238.	3.3	52
62	Enzymatic oligomerization and polymerization of arylamines: state of the art and perspectives. Chemical Papers, 2017, 71, 199-242.	2.2	52
63	AOT vesicles as templates for the horseradish peroxidase-triggered polymerization of aniline. Soft Matter, 2011, 7, 180-193.	2.7	51
64	Dual, Siteâ€Specific Modification of Antibodies by Using Solidâ€Phase Immobilized Microbial Transglutaminase. ChemBioChem, 2017, 18, 1923-1927.	2.6	51
65	Product inhibition of alpha-chymotrypsin in reverse micelles. FEBS Journal, 1991, 199, 95-103.	0.2	49
66	Substrate effects on the enzymatic activity of \hat{l}_{\pm} -chymotrypsin in reverse micelles. Biochemical and Biophysical Research Communications, 1991, 178, 1105-1112.	2.1	46
67	Permeation of a \hat{l}^2 -heptapeptide derivative across phospholipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 2726-2736.	2.6	45
68	How did bacterial ancestors reproduce? Lessons from Lâ€form cells and giant lipid vesicles. BioEssays, 2012, 34, 1078-1084.	2.5	45
69	Modeling of enzymatic reactions in vesicles: The case of ?-chymotrypsin. , 1999, 62, 36-43.		43
70	Enzymatic RNA synthesis in selfâ€reproducing vesicles: An approach to the construction of a minimal synthetic cell. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1994, 98, 1160-1165.	0.9	42
71	In vitro and in vivo anti-tumor effects of novel Span 80 vesicles containing immobilized Eucheuma serra agglutinin. International Journal of Pharmaceutics, 2010, 389, 157-167.	5.2	42
72	Quantification of \hat{l} ±-polylysine: a comparison of four UV/Vis spectrophotometric methods. Analytical Methods, 2010, 2, 1448.	2.7	42

#	Article	IF	CITATIONS
73	Giant Vesicle Formation from Oleic Acid/Sodium Oleate on Glass Surfaces Induced by Adsorbed Hydrocarbon Molecules. Langmuir, 2002, 18, 10509-10511.	3.5	41
74	Enzyme immobilization on silicate glass through simple adsorption of dendronized polymer–enzyme conjugates for localized enzymatic cascade reactions. RSC Advances, 2015, 5, 44530-44544.	3.6	41
75	Structure and Enzymatic Properties of Molecular Dendronized Polymer–Enzyme Conjugates and Their Entrapment inside Giant Vesicles. Langmuir, 2013, 29, 10831-10840.	3.5	40
76	Enzymatic reactions in liposomes. Current Opinion in Colloid and Interface Science, 1996, 1, 638-644.	7.4	38
77	Efficient Polymerization of the Aniline Dimer <i>p</i> -Aminodiphenylamine (PADPA) with <i>Trametes versicolor</i> Laccase/O ₂ as Catalyst and Oxidant and AOT Vesicles as Templates. ACS Catalysis, 2014, 4, 3421-3434.	11.2	38
78	The use of Trametes versicolor laccase for the polymerization of aniline in the presence of vesicles as templates. Enzyme and Microbial Technology, 2014, 55, 72-84.	3.2	37
79	Stable and Simple Immobilization of Proteinase K Inside Glass Tubes and Microfluidic Channels. ACS Applied Materials & Samp; Interfaces, 2015, 7, 25970-25980.	8.0	37
80	Phosphatidylcholine Vesicle-Mediated Decomposition of Hydrogen Peroxide. Langmuir, 2007, 23, 9416-9422.	3.5	36
81	Preparation of Catalytically Active, Covalent α-Polylysineâ^'Enzyme Conjugates via UV/Vis-Quantifiable Bis-aryl Hydrazone Bond Formation. Biomacromolecules, 2011, 12, 134-144.	5.4	35
82	Efficient Passerini reactions in an aqueous vesicle system. RSC Advances, 2015, 5, 102828-102835.	3.6	34
83	Immobilization of Peroxidase on SiO ₂ Surfaces with the Help of a Dendronized Polymer and the Avidinâ€Biotin System. Macromolecular Bioscience, 2011, 11, 1052-1067.	4.1	33
84	Relation between the Molecular Structure of Phosphatidyl Nucleosides and the Morphology of their Supramolecular and Mesoscopic Aggregates. Langmuir, 1996, 12, 4976-4978.	3.5	32
85	Vesicle Formation from Reactive Surfactants. Angewandte Chemie - International Edition, 2008, 47, 1323-1325.	13.8	31
86	Simple enzyme immobilization inside glass tubes for enzymatic cascade reactions. Journal of Materials Chemistry, 2012, 22, 502-511.	6.7	31
87	The mechanism of liposomal damage by taurocholate. Biochimica Et Biophysica Acta - Biomembranes, 1987, 905, 30-38.	2.6	30
88	Preparation and characterization of reactive and stable glucose oxidase-containing liposomes modulated with detergent. Biotechnology and Bioengineering, 2003, 81, 695-704.	3.3	30
89	Stable Immobilization of Enzymes in a Macro- and Mesoporous Silica Monolith. ACS Omega, 2019, 4, 7795-7806.	3.5	30
90	Bilayer permeability-based substrate selectivity of an enzyme in liposomes., 1998, 57, 216-219.		28

#	Article	IF	CITATIONS
91	Oligoesters of (R)-3-Hydroxybutanoic Acid:Â Transmembrane Transport of Ca2+across Vesicle Bilayers. Macromolecules, 1999, 32, 574-580.	4.8	28
92	Permeation through Phospholipid Bilayers, Skinâ€Cell Penetration, Plasma Stability, and CD Spectra of <i>α</i> ―and <i>β</i> ―Oligoproline Derivatives. Chemistry and Biodiversity, 2013, 10, 1-38.	2.1	28
93	Organic synthesis in Aqueous Multiphase Systems — Challenges and opportunities ahead of us. Current Opinion in Colloid and Interface Science, 2021, 56, 101506.	7.4	28
94	Circular Dichroic Properties of Phosphatidylcholine Liposomes. Langmuir, 1997, 13, 1668-1671.	3.5	27
95	Liposome-Assisted Selective Polycondensation of α-Amino Acids and Peptides: the Case of Charged Liposomes. Macromolecules, 2000, 33, 5787-5796.	4.8	27
96	Spectrophotometric quantification of lactose in solution with a peroxidase-based enzymatic cascade reaction system. Analytical and Bioanalytical Chemistry, 2011, 401, 2307-2310.	3.7	27
97	Efficient Ugi reactions in an aqueous vesicle system. RSC Advances, 2017, 7, 33344-33354.	3.6	27
98	Immobilized carbonic anhydrase: preparation, characteristics and biotechnological applications. World Journal of Microbiology and Biotechnology, 2018, 34, 151.	3.6	27
99	Activity and spectroscopic properties of bovine liver catalase in sodium bis(2-ethylhexyl)sulfosuccinate/isooctane reverse micelles. FEBS Journal, 1993, 217, 567-573.	0.2	26
100	Novel Type of Bicellar Disks from a Mixture of DMPC and DMPE-DTPA with Complexed Lanthanides. Langmuir, 2010, 26, 5382-5387.	3.5	26
101	Active Targeting to Osteosarcoma Cells and Apoptotic Cell Death Induction by the Novel Lectin <i>Eucheuma serra</i> Agglutinin Isolated from a Marine Red Alga. Journal of Drug Delivery, 2012, 2012, 1-11.	2.5	26
102	Spectrophotometric Quantification of Peroxidase with <i>p</i> Phenylene-diamine for Analyzing Peroxidase-Encapsulating Lipid Vesicles. Analytical Chemistry, 2017, 89, 5484-5493.	6.5	26
103	Research report on proteins in reverse micelles. Structural aspects and enzymology. Colloids and Surfaces, 1987, 30, 193-207.	0.9	25
104	Liposome-associated retinoic acid. FEBS Letters, 1990, 259, 293-296.	2.8	24
105	Liposomes from Phosphatidyl Nucleosides:Â An NMR Investigation. Langmuir, 1997, 13, 1952-1956.	3.5	24
106	Conformationally Changed Cytochrome c-Mediated Fusion of Enzyme- and Substrate-Containing Liposomes. Biotechnology Progress, 1999, 15, 689-696.	2.6	24
107	Molecular dynamics simulation of n -dodecyl phosphate aggregate structures. European Biophysics Journal, 2001, 30, 330-343.	2.2	24
108	Amphotericin B as a Potential Probe of the Physical State of Vesicle Membranes. Organic Letters, 2004, 6, 3683-3686.	4.6	24

#	Article	IF	CITATIONS
109	Preparation of aqueous polyaniline-vesicle suspensions with class III peroxidases. Comparison between horseradish peroxidase isoenzyme C and soybean peroxidase. Chemical Papers, 2013, 67, .	2.2	24
110	Liposomes Containing Purine and Pyrimidine Bases: Stable Unilamellar Liposomes from Phosphatidyl Nucleosides. The Journal of Physical Chemistry, 1994, 98, 6661-6663.	2.9	23
111	Enhancement of apparent substrate selectivity of proteinase K encapsulated in liposomes through a cholate-induced alteration of the bilayer permeability. Biotechnology and Bioengineering, 2004, 85, 222-233.	3.3	23
112	Immobilization of Carbonic Anhydrase in Glass Micropipettes and Glass Fiber Filters for Flow-Through Reactor Applications. ACS Omega, 2018, 3, 10391-10405.	3.5	23
113	Bell-shaped curves of the enzyme activity in reverse micelles: A simplified model for hydrolytic reactions. Chemical Physics, 1990, 141, 273-283.	1.9	22
114	pH artifacts in reverse micellar enzymology: A warning. Pure and Applied Chemistry, 1992, 64, 1771-1775.	1.9	22
115	Proteolytic activity in cod (Gadus morhua) muscle during salt curing. Food Research International, 2005, 38, 693-699.	6.2	22
116	Molecular Composition of Nonionic Vesicles Prepared from Span 80 or Span 85 by a Twoâ€Step Emulsification Method. Journal of Dispersion Science and Technology, 2006, 27, 1217-1222.	2.4	22
117	The influence of anionic vesicles on the oligomerization of p-aminodiphenylamine catalyzed by horseradish peroxidase and hydrogen peroxide. Synthetic Metals, 2017, 226, 89-103.	3.9	22
118	Synthesizing Polyaniline With Laccase/O2 as Catalyst. Frontiers in Bioengineering and Biotechnology, 2019, 7, 165.	4.1	22
119	Cholesterol Increases the Magnetic Aligning of Bicellar Disks from an Aqueous Mixture of DMPC and DMPE–DTPA with Complexed Thulium Ions. Langmuir, 2012, 28, 10905-10915.	3.5	21
120	Environmentally friendly approach to \hat{l}_{\pm} -acyloxy carboxamides via a chemoenzymatic cascade. RSC Advances, 2016, 6, 68231-68237.	3.6	21
121	Circular Dichroic Properties of Phosphatidylcholine Micellesâ€. Langmuir, 1999, 15, 2346-2350.	3.5	20
122	Enzymatic polymerization of pyrrole with Trametes versicolor laccase and dioxygen in the presence of vesicles formed from AOT (sodium bis-(2-ethylhexyl) sulfosuccinate) as templates. Synthetic Metals, 2015, 200, 123-134.	3.9	20
123	Isolation and characterization of a trypsin inhibitor from white mustard (Sinapis alba L.). Journal of Agricultural and Food Chemistry, 1985, 33, 784-789.	5.2	19
124	Lipase-catalyzed reactions in vesicles as an approach to vesicle self-reproduction. Journal of Liposome Research, 1994, 4, 1135-1158.	3.3	19
125	Alignment of Bicelles Studied with High-Field Magnetic Birefringence and Small-Angle Neutron Scattering Measurements. Langmuir, 2013, 29, 3467-3473.	3.5	19
126	Magnetically Enhanced Bicelles Delivering Switchable Anisotropy in Optical Gels. ACS Applied Materials & Samp; Interfaces, 2014, 6, 1100-1105.	8.0	19

#	Article	IF	CITATIONS
127	How Anionic Vesicles Steer the Oligomerization of Enzymatically Oxidized <i>p-</i> Aminodiphenylamine (PADPA) toward a Polyaniline Emeraldine Salt (PANI-ES)-Type Product. Langmuir, 2016, 32, 9765-9779.	3.5	19
128	Multivesicular Vesicles: Preparation and Applications. ChemSystemsChem, 2021, 3, e2000049.	2.6	19
129	Application of a new, simple and economic colorimetric method for the determination of non-esterified fatty acids in vegetable oils. Food Chemistry, 1991, 39, 249-256.	8.2	18
130	Spectroscopic investigations of peptide 401 from bee venom. Biopolymers, 1981, 20, 373-385.	2.4	17
131	A colorimetric determination of fatty acids as a new assay of lipases in reverse micelles. JAOCS, Journal of the American Oil Chemists' Society, 1990, 67, 110-115.	1.9	17
132	Efficient Preparation of Giant Vesicles as Biomimetic Compartment Systems with High Entrapment Yields for Biomacromolecules. Chemistry and Biodiversity, 2012, 9, 2453-2472.	2.1	17
133	Confusing Quantitative Descriptions of <i>Brønsted</i> i²E¿ <i>Lowry</i> AcidBase Equilibria in Chemistry Textbooks – A Critical Review and Clarifications for Chemical Educators. Helvetica Chimica Acta, 2014, 97, 1-31.	1.6	17
134	Interaction of <i>β</i> ³ / <i>β</i> ² â€Peptides, Consisting of Valâ€Alaâ€Leu Segments, with POPC Giant Unilamellar Vesicles (GUVs) and White Blood Cancer Cells (U937) – A New Type of Cellâ€Penetrating Peptides, and a Surprising Chainâ€Length Dependence of Their Vesicle―and Cellâ€Lysing Activity. Chemistry and Biodiversity, 2015, 12, 697-732.	2.1	17
135	A novel strategy for bioconjugation: synthesis and preliminary evaluation with amphotericin B. Organic and Biomolecular Chemistry, 2007, 5, 1339.	2.8	16
136	On the surface properties of oleate micelles and oleic acid/oleate vesicles studied by spin labeling. Chemistry and Physics of Lipids, 2011, 164, 83-88.	3.2	16
137	Insight into the template effect of vesicles on the laccase-catalyzed oligomerization of N-phenyl-1,4-phenylenediamine from Raman spectroscopy and cyclic voltammetry measurements. Scientific Reports, 2016, 6, 30724.	3.3	16
138	Superior capacitive properties of polyaniline produced by a one-pot peroxidase/H2O2-triggered polymerization of aniline in the presence of AOT vesicles. Electrochimica Acta, 2017, 258, 834-841.	5.2	16
139	Reproduction of vesicles coupled with a vesicle surface-confined enzymatic polymerisation. Communications Chemistry, 2019, 2, .	4.5	16
140	Interactions of human milk lipase with sodium taurocholate and other surfactants. Langmuir, 1986, 2, 139-146.	3.5	15
141	Phospholipase D-Mediated Aggregation, Fusion, and Precipitation of Phospholipid Vesiclesâ€. Langmuir, 2004, 20, 941-949.	3.5	15
142	Dendronized Polymers via Macromonomer Route in Supercritical Carbon Dioxide. Macromolecular Rapid Communications, 2008, 29, 1609-1613.	3.9	15
143	pHâ€Sensitive Vesicles Containing a Lipidic <i>β</i> â€Amino Acid with Two Hydrophobic Chains. Chemistry and Biodiversity, 2008, 5, 16-30.	2.1	15
144	Effect of template type on the preparation of the emeraldine salt form of polyaniline (PANI-ES) with horseradish peroxidase isoenzyme C (HRPC) and hydrogen peroxide. RSC Advances, 2019, 9, 33080-33095.	3.6	15

#	Article	IF	Citations
145	From vesicles toward protocells and minimal cells. Soft Matter, 2022, 18, 4823-4849.	2.7	15
146	Enzymatic activity and stability ofd-fructose dehydrogenase and sarcosine dehydrogenase immobilizd onto giant vesicles. Biotechnology and Bioengineering, 2003, 84, 415-423.	3.3	14
147	Achievements and Challenges in Generating Protocell Models. ChemBioChem, 2008, 9, 2771-2772.	2.6	14
148	Lipid Vesicles and Other Polymolecular Aggregatesâ€"From Basic Studies of Polar Lipids to Innovative Applications. Applied Sciences (Switzerland), 2021, 11, 10345.	2.5	14
149	Tumor Cell Growth Inhibition by Liposome-Encapsulated Aromatic Polyamidines. Journal of Pharmaceutical Sciences, 1990, 79, 672-677.	3.3	13
150	Kinetic behaviour of alpha-chymotrypsin in reverse micelles. A stopped-flow study. FEBS Journal, 1992, 208, 165-170.	0.2	13
151	An ESR characterization of micelles and vesicles formed in aqueous decanoic acid/sodium decanoate systems using different spin labels. Chemistry and Physics of Lipids, 2008, 156, 17-25.	3.2	13
152	Fluorescent Probe Study of AOT Vesicle Membranes and Their Alteration upon Addition of Aniline or the Aniline Dimer <i>p</i> -Aminodiphenylamine (PADPA). Langmuir, 2017, 33, 1984-1994.	3.5	13
153	Enzymatic Synthesis of Highly Electroactive Oligoanilines from a <i>p</i> -Aminodiphenylamine/Aniline Mixture with Anionic Vesicles as Templates. Langmuir, 2018, 34, 9153-9166.	3.5	13
154	Supramolecular Transformations of Vesicles from Amino Acid Based Double Chain Amphiphiles. Langmuir, 1997, 13, 4480-4482.	3.5	12
155	Inversion of the Configuration of a Single Stereocenter in a $\hat{l}^2 \hat{a} \in Heptapeptide$ Leads to Drastic Changes in its Interaction with Phospholipid Bilayers. ChemBioChem, 2009, 10, 1978-1981.	2.6	12
156	Analysis of the 22-NBD-cholesterol transfer between liposome membranes and its relation to the intermembrane exchange of 25-hydroxycholesterol. Colloids and Surfaces B: Biointerfaces, 2010, 77, 117-121.	5.0	12
157	Studies in Bile Salt Solutions .XIII. Hydrophobic Substrate Effects on the Esterase Activity of Bile-Salt-Stimulated Human-Milk Lipase. Hydrolysis of 4-Nitrophenyl Alkanoates and Alkyl 4-Nitrobenzoates. Australian Journal of Chemistry, 1986, 39, 249.	0.9	11
158	Magnetic Field Alignable Domains in Phospholipid Vesicle Membranes Containing Lanthanides. Journal of Physical Chemistry B, 2010, 114, 174-186.	2.6	11
159	EPR Study of Polyaniline Synthesized Enzymatically in the Presence of Submicrometer-Sized AOT Vesicles. Journal of Physical Chemistry B, 2014, 118, 2205-2213.	2.6	11
160	Proteinase K activity determination with \hat{l}^2 -galactosidase as sensitive macromolecular substrate. Analytical Biochemistry, 2016, 513, 54-60.	2.4	11
161	Tailoring Bicelle Morphology and Thermal Stability with Lanthanide-Chelating Cholesterol Conjugates. Langmuir, 2016, 32, 9005-9014.	3.5	11
162	Bile Salt Roles in Bile-Salt-Stimulated Lipase Activity. Journal of Pediatric Gastroenterology and Nutrition, 1986, 5, 622-629.	1.8	10

#	Article	IF	CITATIONS
163	Application of a simple diffusion model for the enzymatic activity of α-chymotrypsin in reverse micelles. Journal of Colloid and Interface Science, 1992, 154, 298-302.	9.4	10
164	Cholesterol-Diethylenetriaminepentaacetate Complexed with Thulium Ions Integrated into Bicelles To Increase Their Magnetic Alignability. Journal of Physical Chemistry B, 2013, 117, 14743-14748.	2.6	10
165	Influence of the Membrane Dye R18 and of <scp>DMSO</scp> on Cell Penetration of Guanidiniumâ€Rich Peptides. Chemistry and Biodiversity, 2018, 15, e1800302.	2.1	10
166	Studies in Bile-Salt Solutions. XXII. The Effect of Reversed Micelles and of Aerosol-OT Aqueous Micelles on the Esterase Activity of Bile-Salt-Stimulated Human-Milk Lipase. Determination of Enzyme-Inhibitor Complex Dissociation Constants. Australian Journal of Chemistry, 1986, 39, 2037.	0.9	9
167	Self-Reproduction of Micelles and Liposomes and the Transition to Life. Journal of Liposome Research, 1993, 3, 631-638.	3.3	9
168	External surface area determination of lipid vesicles using trinitrobenzene sulfonate and ultraviolet/visible spectrophotometry. Analytical Biochemistry, 2013, 442, 262-271.	2.4	9
169	Preparation and Applications of Dendronized Polymer–Enzyme Conjugates. Methods in Enzymology, 2017, 590, 445-474.	1.0	9
170	Catalyst-free synthesis of \hat{l} ±-acyloxycarboxamides in aqueous media. Environmental Chemistry Letters, 2019, 17, 1011-1016.	16.2	9
171	Study of the Interaction of a Novel Semi-Synthetic Peptide with Model Lipid Membranes. Membranes, 2020, 10, 294.	3.0	9
172	A two-enzyme cascade reaction consisting of two reaction pathways. Studies in bulk solution for understanding the performance of a flow-through device with immobilised enzymes. RSC Advances, 2020, 10, 18655-18676.	3.6	9
173	Molecular engineering of lanthanide ion chelating phospholipids generating assemblies with a switched magnetic susceptibility. Physical Chemistry Chemical Physics, 2017, 19, 20991-21002.	2.8	8
174	Proteolytic activity in sunflower seeds (Helianthus annuus L.). Journal of Agricultural and Food Chemistry, 1984, 32, 322-329.	5.2	7
175	Inactivation of Bile-Salt-Stimulated Human Milk Esterase. Journal of Pediatric Gastroenterology and Nutrition, 1986, 5, 630-637.	1.8	7
176	A multifrequency EPR study of poly(PADPA) synthesized with Trametes versicolor laccase from the aniline dimer p-aminodiphenylamine (PADPA) in the presence of anionic vesicles. Current Applied Physics, 2015, 15, 1516-1520.	2.4	7
177	How experimental details matter. The case of a laccase-catalysed oligomerisation reaction. RSC Advances, 2018, 8, 33229-33242.	3.6	7
178	Effect of Template Type on the <i>Trametes versicolor</i> Laccase-Catalyzed Oligomerization of the Aniline Dimer <i>p</i> -Aminodiphenylamine (PADPA). ACS Omega, 2019, 4, 2931-2947.	3.5	7
179	Differential effects of liposome-entrapped desferrioxamine on proliferation and erythroid differentiation of murine erythroleukemic Friend cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 1989, 1013, 36-41.	4.1	6
180	Aromatic dental monomers affect the activity of cholesterol esterase. BBA - Proteins and Proteomics, 2001, 1550, 100-106.	2.1	6

#	Article	IF	CITATIONS
181	Formation and Properties of Fatty Acid Vesicles (Liposomes). , 2006, , 1-19.		6
182	Why Giant Vesicles?. Perspectives in Supramolecular Chemistry, 2007, , 1-9.	0.1	6
183	Liposome Electroformation. Perspectives in Supramolecular Chemistry, 2007, , 26-36.	0.1	6
184	Phospholipid Membranes as Regulators of Localized Activity. Chemistry and Biology, 2010, 17, 922-923.	6.0	6
185	Shielding effects in spacious macromolecules: a case study with dendronized polymers. Photochemical and Photobiological Sciences, 2016, 15, 964-968.	2.9	6
186	Enhanced Heat Stability of αâ€Chymotrypsin through Singleâ€Enzyme Confinement in Attoliter Liposomes. ChemBioChem, 2016, 17, 1221-1224.	2.6	6
187	Mastering the magnetic susceptibility of magnetically responsive bicelles with $3\hat{l}^2$ -amino-5-cholestene and complexed lanthanide ions. Physical Chemistry Chemical Physics, 2017, 19, 10820-10824.	2.8	6
188	Detection of Water in Lipase-Catalyzed Reactions in Reverse Micelles as Studied by Infrared Spectroscopy. Biocatalysis, 1990, 3, 381-383.	0.9	5
189	Isolation and Characterization of Purified Bile Salt Stimulated Human Milk Lipase. Journal of Bioactive and Compatible Polymers, 1994, 9, 66-79.	2.1	5
190	Application of an enzymatic cascade reaction for the synthesis of the emeraldine salt form of polyaniline. Chemical Papers, 2021, 75, 5071-5085.	2.2	5
191	Hemin-catalyzed oxidative oligomerization of <i>p</i> -aminodiphenylamine (PADPA) in the presence of aqueous sodium dodecylbenzenesulfonate (SDBS) micelles. RSC Advances, 2022, 12, 13154-13167.	3.6	5
192	Studies in bile salt solutions. Journal of Colloid and Interface Science, 1986, 112, 488-496.	9.4	4
193	Understanding the Enhanced Magnetic Response of Aminocholesterol Doped Lanthanide-Ion-Chelating Phospholipid Bicelles. Langmuir, 2017, 33, 8533-8544.	3.5	4
194	Functional nano-structure of aggregates self-organized on the liquid/solid interface-enzymatic polymerization of ADP. Progress in Colloid and Polymer Science, 1997, 106, 245-248.	0.5	4
195	Activity of bile-salt-stimulated human milk lipase in the presence of liposomes and mixed taurocholate-phosphatidylcholine micelles. Biochimica Et Biophysica Acta - Biomembranes, 1987, 905, 39-47.	2.6	3
196	Additions and Corrections - Liposomes Containing Purine and Pyrimidine Bases: Stable Unilamellar Liposomes from Phosphatidyl Nucleosides. The Journal of Physical Chemistry, 1994, 98, 10376-10376.	2.9	3
197	Multivesicular Vesicles: Preparation and Applications. ChemSystemsChem, 2021, 3, e2100011.	2.6	3
198	Atomic Force Microscopy Observation of Poly(A) Grown on the Liquid/Solid Interface from Sodium Bis(2-ethylhexyl) Sulfosuccinate/Isooctane Reversed Micellar Solution. Langmuir, 1998, 14, 3454-3457.	3.5	2

#	Article	IF	CITATIONS
199	An Amphotericin B-Fluorescein Conjugate as a Powerful Probe for Biochemical Studies of the Membrane. Angewandte Chemie - International Edition, 2004, 43, 5428-5428.	13.8	2
200	Fluctuating Vesicle Shapes. Perspectives in Supramolecular Chemistry, 2007, , 149-167.	0.1	2
201	Microinjection of Macromolecules in Giant Vesicles Prepared by Electroformation. Perspectives in Supramolecular Chemistry, 2007, , 285-295.	0.1	2
202	Evaluation of Biodegradable Glucose Based Surfactants as a Promoting Medium for the Synthesis of Peptidomimetics with the Coumarin Scaffold. ChemistrySelect, 2020, 5, 9607-9614.	1.5	2
203	Dynamic Aspects of Fatty Acid Vesicles: pH-Induced Vesicle-Micelle Transition and Dilution-Induced Formation of Giant Vesicles. Perspectives in Supramolecular Chemistry, 2007, , 261-270.	0.1	1
204	Giant Vesicles: A Historical Introduction. Perspectives in Supramolecular Chemistry, 2007, , 11-24.	0.1	1
205	Formation of Giant Vesicles from Different Kinds of Lipids Using the Electroformation Method. Perspectives in Supramolecular Chemistry, 2007, , 37-43.	0.1	1
206	Study on Stress-Mediated Behavior and Preparation of Giant Vesicles. Perspectives in Supramolecular Chemistry, 2007, , 369-377.	0.1	1
207	Inside Cover: Giant Vesicles: Preparations and Applications (ChemBioChem 7/2010). ChemBioChem, 2010, 11, 834-834.	2.6	1
208	Giant unilamellar vesicles: From protocell models to the construction of minimal cells. , 2019, , $569-583$.		1
209	Uptake and Metabolism of Sulphides by Wine Yeasts. Journal of Plant Physiology, 1986, 125, 123-136.	3.5	0
210	Effect of Temperature on the Uptake of 35S(-II) by Wine Yeasts. Journal of Bioactive and Compatible Polymers, 1986, 1, 335-347.	2.1	0
211	Liposome mediated delivery of retinoids and aromatic polyamidines: Effects on growth of tumor cell lines. Cytotechnology, 1991, 5, 23-24.	1.6	0
212	ESR Spectral Simulation Study of Oleic Acid/Oleate Solution by Using a Spin Probe. Studies in Surface Science and Catalysis, 2001, , 85-88.	1.5	0
213	Light-Induced Shape Transitions of Giant Vesicles. Perspectives in Supramolecular Chemistry, 2007, , 335-339.	0.1	0
214	Enzymatic Reactions in Giant Vesicles. Perspectives in Supramolecular Chemistry, 2007, , 297-311.	0.1	0
215	Entrapment of Proteins in Soybean Phosphatidylcholine Vesicles. Perspectives in Supramolecular Chemistry, 2007, , 361-367.	0.1	0
216	Giant Liposomes as Model Biomembranes for Roles of Lipids in Cellular Signalling. Perspectives in Supramolecular Chemistry, 2007, , 272-284.	0.1	0

#	Article	IF	CITATIONS
217	Molecular Organization on Giant Unilamellar Vesicles. Perspectives in Supramolecular Chemistry, 2007, , 379-384.	0.1	0
218	Enzymatic Polymerization in Presence of Vesicles as Templates. Chimia, 2009, 63, 778-778.	0.6	0
219	A Novel Role of Vesicles as Templates for the Oxidation and Oligomerization of <i>p</i> i>a€Aminodiphenylamine by Cytochrome <i>c</i> . Helvetica Chimica Acta, 2017, 100, e1700027.	1.6	0
220	Anionic Vesicles Can Control the Reaction Pathway of a Highly Reactive Intermediate. Chimia, 2017, 71, 386.	0.6	0
221	Organocatalytic stereoselective epoxidation of alphaâ€alkylidene oxindoles using alpha,alphaâ€diphenylprolinol in liposome membrane. ChemCatChem, 2018, 11, 974.	3.7	0
222	Chemical Autopoiesis: Self-Replication of Micelles and Vesicles. , 1994, , 25-39.		0
223	Growth and Division of Vesicles Coupled with Information Molecules. Seibutsu Butsuri, 2021, 61, 378-381.	0.1	0