## Matthias Laska

## List of Publications by Year

 in descending order
## Source: https:/|exaly.com/author-pdf/279041/publications.pdf

Version: 2024-02-01

1.1

Taste detection threshold of human (Homo sapiens) subjects and taste preference threshold of
2 black-handed spider monkeys (Ateles geoffroyi) for the sugar substitute isomalt. Primates, 2021, 62,
1.1

0 389-394.

Taste-induced facial responses in black-handed spider monkeys (Ateles geoffroyi). Behavioural
$3 \quad \begin{aligned} & \text { Taste-induced facial responses in } \\ & \text { Processes, 2021, 188, } 104417 .\end{aligned}$
1.1

1

Taste responsiveness of chimpanzees (Pan troglodytes) and black-handed spider monkeys (Ateles) Tj ETQqO 00 rgBT/IOverlockk 10 Tf 50

Food preferences and nutrient composition in zoo-housed ring-tailed lemurs, Lemur catta. Physiology and Behavior, 2020, 226, 113125.
2.1

Visual detection and fruit selection by the mantled howler monkey ( Alouatta palliata ). American
Journal of Primatology, 2020, 82, e23186.
$1.7 \quad 2$

> Olfactory-based interspecific recognition of human emotions: Horses (Equus ferus caballus) can
> recognize fear and happiness body odour from humans (Homo sapiens). Applied Animal Behaviour Science, 2020, 230, 105072 .

8 Taste Responsiveness of Spider Monkeys to Dietary Ethanol. Chemical Senses, 2019, 44, 631-638.
2.0

10
$9 \quad$ Chimpanzee extractive foraging with excavating tools: Experimental modeling of the origins of human
9 technology. PLoS ONE, 2019, 14, e0215644.

10 Preferential hand use by captive chimpanzees (Pan troglodytes) in manual and tool digging. Primates, 2019, 60, 367-373.
$1.1 \quad 1$

```
11 Meerkats (Suricata suricatta) are able to detect hidden food using olfactory cues alone. Physiology
and Behavior, 2019, 202, 69-76.
```

$2.1 \quad 4$

Taste responsiveness of Western chimpanzees (Pan troglodytes verus) to five food-associated saccharides. Primates, 2019, 60, 29-39.
1.15

Taste responsiveness to two steviol glycosides in three species of nonhuman primates. Environmental
Epigenetics, 2018, 64, 63-68.

Behavioral responses of CD-1 mice to conspecific and heterospecific blood odors and to a blood odor
2.1

4 component. Physiology and Behavior, 2018, 184, 205-210.

Olfactory sensitivity for mold-associated odorants in CD-1 mice and spider monkeys. Journal of
15 Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2018, 204,
$1.6 \quad 2$
821-833.
Attractant or Repellent? Behavioral Responses to Mammalian Blood Odor and to a Blood Odor
16 Component in a Mesopredator, the Meerkat (Suricata suricatta). Frontiers in Behavioral
2.0

3
Neuroscience, 2018, 12, 152.

Effects of an odor or taste stimulus applied to an artificial teat on the suckling behavior of newborn
dairy calves. Journal of Animal Science and Technology, 2018, 60, 16.
2.5

0

Hand preferences in two unimanual and two bimanual coordinated tasks in the black-handed spider
19 Diet selectivity in relation to food quality and availability by the endemic Perote squirre
(Xerospermophilus perotensis). Therya, 2018, 9, 121-127.

23 | Behavioral Responses of CD-1 Mice to Six Predator Odor Components. Chemical Senses, 2016, 41, |
| :--- |
| $399-406$. |

$24 \quad$| Using morphometrics to quantitatively differentiate African wild dog footprints from domestic dog |
| :--- |
| footprints - a pilot study. African Journal of Ecology, 2016, 54, 3-8. |

$25 \quad$ Facial expressions and other behavioral responses to pleasant and unpleasant tastes in cats (Felis) Tj ETQq1 10.784314 rgBT/Overlo

$$
\begin{aligned}
& \text { Chemical recognition of fruit ripeness in spider monkeys (Ateles geoffroyi). Scientific Reports, 2015, 5, } \\
& 14895 \text {. }
\end{aligned}
$$

27 Gustatory Responsiveness of Black-and-White Ruffed Lemurs (Varecia variegata variegata) to

27

Spider monkeys (Ateles geoffroyi) are less sensitive to the odor of aliphatic ketones than to the odor
of other classes of aliphatic compounds. Neuroscience Research, 2015, 99, 46-54.

$$
\begin{aligned}
& 29 \text { Olfactory Discrimination Learning in an Outbred and an Inbred Strain of Mice. Chemical Senses, 2015, } \\
& 40,489-496 .
\end{aligned}
$$

1.9

2
$2.0 \quad 4$

30 The Sensory Systems of Alouatta: Evolution with an Eye to Ecology. , 2015, , 317-336.
Olfactory Sensitivity and Odor Structure-Activity Relationships for Aliphatic Ketones in CD-1 Mice.
31 Chemical Senses, 2014, 39, 415-424.
Gustatory responsiveness to the 20 proteinogenic amino acids in the spider monkey (Ateles geoffroyi).
32 Physiology and Behavior, 2014, 127, 20-26.

| Behavioral Responses to Mammalian Blood Odor and a Blood Odor Component in Four Species of | 2.5 |
| :--- | :--- |

Olfactory discrimination ability of South African fur seals (Arctocephalus pusillus) for enantiomers.
34 Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology,
1.6

6
2013, 199, 535-544.
Olfactory Discrimination Ability of Asian Elephants (Elephas maximus) for Structurally Related
Odorants. Chemical Senses, 2013, 38, 107-118.
2.0

55

PLoS ONE, 2013, 8, e80621.

Olfactory sensitivity for â€œgreen odorsâ€•(aliphatic C6 alcohols and C6 aldehydes) â€" A comparative
38 study in male CD-1 mice (Mus musculus) and female spider monkeys (Ateles geoffroyi). Pharmacology Biochemistry and Behavior, 2012, 101, 450-457.

39 Successful acquisition of an olfactory discrimination test by Asian elephants, Elephas maximus.
Physiology and Behavior, 2012, 105, 809-814.
$40 \quad \begin{aligned} & \text { Olfactory sensitivity for six amino acids: a comparative study in CD-1 mice and spider monkeys. Amino } \\ & \text { Acids, 2012, 42, 1475-1485. }\end{aligned}$
2.1

28
2.7

16
Olfactory Sensitivity and Odor Structure-Activity Relationships for Aliphatic Carboxylic Acids in CD-1
Mice. PLoS ONE, 2012, 7, e34301.

Ultra-high olfactory sensitivity for the human sperm-attractant aromatic aldehyde bourgeonal in CD-1
mice. Neuroscience Research, 2011, 71, 355-360.
1.9

14

Olfactory sensitivity for sperm-attractant aromatic aldehydes: a comparative study in human subjects
43 and spider monkeys. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and
Behavioral Physiology, 2011, 197, 15-23.
44 Olfactory and Visuospatial Learning and Memory Performance in Two Strains of Alzheimer's Disease
Model Miceâ€"A Longitudinal Study. PLoS ONE, 2011, 6, e19567.

Olfactory discrimination of aliphatic odorants in South African fur seals (arctocephalus pusillus)..
Journal of Comparative Psychology (Washington, D C: 1983), 2010, 124, 187-193.

How big is the gap between olfactory detection and recognition of aliphatic aldehydes?. Attention,
Perception, and Psychophysics, 2010, 72, 806-812.

Human Male Superiority in Olfactory Sensitivity to the Sperm Attractant Odorant Bourgeonal.
$47 \quad \begin{aligned} & \text { Human Male Superiority in Olfactory } \\ & \text { Chemical Senses, 2010, } 35,427-432 .\end{aligned}$
$2.0 \quad 18$

48 Red junglefowl have individual body odors. Journal of Experimental Biology, 2010, 213, 1619-1624.
1.7

27
49 Olfactory Perception of 6 Amino Acids by Human Subjects. Chemical Senses, 2010, 35, 279-287.

$2.0 \quad 16$

Odor Interaction between Bourgeonal and Its Antagonist Undecanal. Chemical Senses, 2009, 34,
2.0

28
625-630.

Olfactory sensitivity for alkylpyrazinesâ€"a comparative study in CDâ€ $\ddagger$ mice and spider monkeys. Journal
of Experimental Zoology, 2009, 311A, 278-288.
1.2

20
51 of Experimental Zoology, 2009, 311A, 278-288.

Gustatory Responsiveness to Six Bitter Tastants in Three Species of Nonhuman Primates. Journal of
1.8

17

Food Preferences and Nutrient Composition in Captive White-handed Gibbons, Hylobates lar.
International Journal of Primatology, 2008, 29, 1535-1547.
 Primatology, 2008, 70, 839-847.

56 Successful acquisition of an olfactory discrimination paradigm by South African fur seals, Arctocephalus pusillus. Physiology and Behavior, 2008, 93, 1033-1038.
2.1

20
Olfactory sensitivity for putrefaction-associated thiols and indols in three species of non-human

1.7

Olfactory discrimination ability of CD-1 mice for a large array of enantiomers. Neuroscience, 2007, 144, 295-301.
2.3
59 Which senses play a role in nonhuman primate food selection? A comparison between squirrel
monkeys and spider monkeys. American Journal of Primatology, 2007, 69, 282-294.
$1.7 \quad 92$

Olfactory discrimination ability of CD-1 mice for aliphatic aldehydes as a function of stimulus
60 concentration. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral
1.6

10 Physiology, 2007, 193, 955-961.

61 Self-anointing behavior in free-ranging spider monkeys (Ateles geoffroyi) in Mexico. Primates, 2007, 48,
160-163.
1.1

28

62 Olfactory sensitivity for aliphatic aldehydes in CD-1 mice. Behavioural Brain Research, 2006, 167, 349-354.
2.2

33
63 Sex-Specific Differences in Olfactory Sensitivity for Putative Human Pheromones in Nonhuman Primates.. Journal of Comparative Psychology (Washington, D C: 1983), 2006, 120, 106-112.0.523The Frequency of Occurrence of Acyclic Monoterpene Alcohols in the Chemical Environment does64 not Determine Olfactory Sensitivity in Nonhuman Primates. Journal of Chemical Ecology, 2006, 32,
1.8
65 Olfactory sensitivity for aliphatic alcohols and aldehydes in spider monkeys (Ateles geoffroyi). American Journal of Physical Anthropology, 2006, 129, 112-120.
2.1 ..... 44
66 Olfactory Sensitivity for Enantiomers and Their Racemic Mixtures--A Comparative Study in CD-1 Miceand Spider Monkeys. Chemical Senses, 2006, 31, 655-664.
2.031Olfactory sensitivity for aliphatic ketones in squirrel monkeys and pigtail macaques. Experimental1.517
Brain Research, 2005, 160, 302-311.Olfactory Responsiveness to Two Odorous Steroids in Three Species of Nonhuman Primates. Chemical2.035
Senses, 2005, 30, 505-511.
2.0 ..... 44
The Number of Functional Olfactory Receptor Genes and the Relative Size of Olfactory Brain69 Structures Are Poor Predictors of Olfactory Discrimination Performance with Enantiomers.Chemical Senses, 2005, 30, 171-175.Olfactory Discrimination Ability for Aliphatic C6 Alcohols as a Function of Presence, Position, andConfiguration of a Double Bond. Chemical Senses, 2005, 30, 755-760.2,4,5-trimethylthiazoline in four species of mammals. Physiology and Behavior, 2005, 84, 211-215.2.1

74 Gustatory responsiveness to monosodium glutamate and sodium chloride in four species of nonhuman primates. The Journal of Experimental Zoology, 2004, 301A, 898-905.
75 Sour-Taste Tolerance in Four Species of Nonhuman Primates. Journal of Chemical Ecology, 2003, 29,
$2637-2649$. $\begin{aligned} & \text { Olfactory sensitivity for aliphatic aldehydes in squirrel monkeys and pigtail macaques. Journal of } \\ & 76 \quad \text { Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2003, 189, }\end{aligned}$
1.8
1.6 263-271.

Food preferences and nutrient composition in captive pacas, Agouti paca (Rodentia, Dasyproctidae).
Mammalian Biology, 2003, 68,31-41.
1.5 Mammalian Biology, 2003, 68, 31-41.

Successful acquisition of an olfactory discrimination paradigm by spider monkeys, Ateles geoffroyi.
Physiology and Behavior, 2003, 78, 321-329.

79 Discrimination Thresholds: Replication and Extension to Nonhuman Primates. Chemical Senses, 2003,
28, 105-111.

80 Olfactory Sensitivity for Aliphatic Esters in Spider Monkeys (Ateles geoffroyi).. Behavioral Neuroscience, 2003, 117, 1142-1149.
$1.2 \quad 57$

## 81 Olfactory Discrimination Ability for Aromatic Odorants as a Function of Oxygen Moiety. Chemical <br> Senses, 2002, 27, 23-29.

Gustatory responsiveness to food-associated saccharides in European rabbits, Oryctolagus cuniculus. Physiology and Behavior, 2002, 76, 335-341.
2.1

10
83 Deviant olfactory experiences, magical ideation, and olfactory sensitivity: a study with healthy German and Japanese subjects. Psychiatry Research, 2002, 111, 21-33.
3.3

18

Olfactory sensitivity for aliphatic esters in squirrel monkeys and pigtail macaques. Behavioural Brain
84 Research, 2002, 134, 165-174.
2.2

56

Olfactory sensitivity for aliphatic alcohols in squirrel monkeys and pigtail macaques. Journal of
1.7

63
$85 \quad \begin{aligned} & \text { Olfactory sensitivity for aliphatic alcohols in sq } \\ & \text { Experimental Biology, 2002, 205, 1633-1643. }\end{aligned}$

Olfactory sensitivity for aliphatic alcohols in squirrel monkeys and pigtail macaques. Journal of Experimental Biology, 2002, 205, 1633-43.
1.7

42

| 91 | Enantioselectivity of odor perception in honeybees (Apis mellifera carnica).. Behavioral Neuroscience, 2001, 115, 632-639. | 1.2 | 47 |
| :---: | :---: | :---: | :---: |
| 92 | Gustatory responsiveness to polycose in four species of nonhuman primates. Journal of Chemical Ecology, 2001, 27, 1997-2011. | 1.8 | 32 |
| 93 | Perception of Trigeminal Chemosensory Qualities in the Elderly. Chemical Senses, 2001, 26, 681-689. | 2.0 | 42 |
| 94 | Laterality of tail resting posture in three species of New World primates. Neuropsychologia, 2000, 38, 1040-1046. | 1.6 | 15 |
| 95 | Food Preferences and Nutrient Composition in Captive Spider Monkeys, Ateles geoffroyi. International Journal of Primatology, 2000, 21, 671-683. | 1.9 | 43 |
| 96 | Gustatory Responsiveness to food-associated acids in the spider monkey (Ateles geoffroyi). Primates, 2000, 41, 213-221. | 1.1 | 18 |
| 97 | Gustatory responsiveness to food-associated sugars and acids in pigtail macaques, Macaca nemestrina. Physiology and Behavior, 2000, 70, 495-504. | 2.1 | 25 |
| 98 | Enantioselectivity of odor perception in squirrel monkeys and humans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 277, R1098-R1103. | 1.8 | 42 |
| 99 | Odor Identification, Consistency of Label Use, Olfactory Threshold and their Relationships to Odor Memory over the Human Lifespan. Chemical Senses, 1999, 24, 337-346. | 2.0 | 150 |

100 Taste Preference Thresholds for Food-Associated Sugars in Baboons (Papio hamadryas anubis). International Journal of Primatology, 1999, 20, 25-34.
101 Taste Responsiveness to Food-Associated Acids in the Squirrel Monkey (Saimiri sciureus). Journal of
Chemical Ecology, 1999, 25, 1623-1632. ..... 1.8 ..... 14
102 Taste difference thresholds for sucrose in two species of nonhuman primates. American Journal of1.725
Primatology, 1999, 48, 153-160.
$2.0 \quad 92$Chemical Senses, 1999, 24, 263-270.Olfactory Discrimination Ability and Odor StructureActivity Relationships in Honeybees. Chemical2.0125Senses, 1999, 24, 429-438.
2.150
105 Different forms of human odor memory: a developmental study. Neuroscience Letters, 1999, 272, 17-20.Odor structureâ€"activity relationships compared in human and nonhuman primates.. Behavioral1.2

| 109 | Assessing olfactory performance in an Old World primate, Macaca nemestrina. Physiology and Behavior, 1998, 64, 521-527. | 2.1 | 27 |
| :---: | :---: | :---: | :---: |
| 110 | Laterality in The Use of The Prehensile Tail in The Spider Monkey (Ateles geoffroyi). Cortex, 1998, 34, 123-130. | 2.4 | 12 |
| 111 | Differences in Perception of Everyday Odors: a Japanese-German Cross-cultural Study. Chemical Senses, 1998, 23, 31-38. | 2.0 | 264 |
| 112 | Odor structure-activity relationships of carboxylic acids correspond between squirrel monkeys and humans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1998, 274, R1639-R1645. | 1.8 | 39 |
| 113 | Food Avoidance Learning in Squirrel Monkeys and Common Marmosets. Learning and Memory, 1998, 5, 193-203. | 1.3 | 20 |
| 114 | Trigeminal Perception of Odorant Quality in Congenitally Anosmic Subjects. Chemical Senses, 1997, 22, 447-456. | 2.0 | 141 |
| 115 | Olfactory Discrimination Ability for Aliphatic Esters in Squirrel Monkeys and Humans. Chemical Senses, 1997, 22, 457-465. | 2.0 | 80 |
| 116 | Taste Preferences for Five Food-Associated Sugars in the Squirrel Monkey (Saimiri sciureus). Journal of Chemical Ecology, 1997, 23, 659-672. | 1.8 | 27 |
| 117 | Odour perception in relation to age, general health, anthropometry and dental state. Archives of Gerontology and Geriatrics, 1997, 25, 263-275. | 3.0 | 19 |
| 118 | Manual Laterality in Spider Monkeys (Ateles geoffroyi) Solving Visually and Tactually Guided Food-Reaching Tasks. Cortex, 1996, 32, 717-726. | 2.4 | 48 |
| 119 | A study of long-term odor memory in squirrel monkeys (Saimiri sciureus).. Journal of Comparative Psychology (Washington, D C: 1983), 1996, 110, 125-130. | 0.5 | 32 |
| 120 | A study of correlates of hand preferences in squirrel monkeys (Saimiri sciureus). Primates, 1996, 37, 457-465. | 1.1 | 22 |
| 121 | Taste preference thresholds for food-associated sugars in the squirrel monkey (Saimiri sciureus). Primates, 1996, 37, 91-95. | 1.1 | 29 |

122 Gustatory thresholds for food-associated sugars in the spider monkey (Ateles geoffroyi). , 1996, 39,
189-193.39
123 Failure to Demonstrate Systematic Changes in Olfactory Perception in the Course of Pregnancy: a ..... 2.0 ..... 46 Longitudinal Study. Chemical Senses, 1996, 21, 567-571.

Ability of Female Squirrel Monkeys (<i>Saimiri sciureus)</i> to Discriminate between Conspecific Urine
Odours. Ethology, 1995, 99, 39-52.

Taste Difference Thresholds for Sucrose in Squirrel Monkeys $\langle\mathrm{i}\rangle$ (Saimiri sciureus $\langle\mid \mathrm{i}\rangle\langle\mathrm{i}\rangle$ ) <|i>. Folia
Primatologica, 1994, 63, 144-148. Behavioral Physiology, 1993, 173, 249-56.

Assessing olfactory performance in a new world primate, Saimiri sciureus. Physiology and Behavior,

Maturation of binaural interaction components in auditory brainstem responses of young guinea pigs
130 with monaural or binaural conductive hearing loss. European Archives of Oto-Rhino-Laryngology,
1.6

