Matthias Laska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/279041/publications.pdf

Version: 2024-02-01

135 papers

4,101 citations

94433 37 h-index 54 g-index

136 all docs

136
docs citations

136 times ranked

2321 citing authors

#	Article	IF	CITATIONS
1	Differences in Perception of Everyday Odors: a Japanese-German Cross-cultural Study. Chemical Senses, 1998, 23, 31-38.	2.0	264
2	Odor Identification, Consistency of Label Use, Olfactory Threshold and their Relationships to Odor Memory over the Human Lifespan. Chemical Senses, 1999, 24, 337-346.	2.0	150
3	Trigeminal Perception of Odorant Quality in Congenitally Anosmic Subjects. Chemical Senses, 1997, 22, 447-456.	2.0	141
4	Olfactory Discrimination Ability and Odor StructureActivity Relationships in Honeybees. Chemical Senses, 1999, 24, 429-438.	2.0	125
5	A comparison of the detection thresholds of odour mixtures and their components. Chemical Senses, 1991, 16, 651-662.	2.0	122
6	Olfactory Discrimination Ability for Homologous Series of Aliphatic Alcohols and Aldehydes. Chemical Senses, 1999, 24, 263-270.	2.0	92
7	Which senses play a role in nonhuman primate food selection? A comparison between squirrel monkeys and spider monkeys. American Journal of Primatology, 2007, 69, 282-294.	1.7	92
8	Olfactory Discrimination Ability for Aliphatic Esters in Squirrel Monkeys and Humans. Chemical Senses, 1997, 22, 457-465.	2.0	80
9	Discriminating parts from the whole: determinants of odor mixture perception in squirrel monkeys, Saimiri sciureus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1993, 173, 249-56.	1.6	70
10	Unilateral olfactory perception and magical ideation. Schizophrenia Research, 2001, 47, 255-264.	2.0	68
11	Olfactory sensitivity to food odor components in the short-tailed fruit bat, Carollia perspicillata (phyllostomatidae, chiroptera). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1990, 166, 395.	1.6	64
12	Olfactory sensitivity for aliphatic alcohols in squirrel monkeys and pigtail macaques. Journal of Experimental Biology, 2002, 205, 1633-1643.	1.7	63
13	Olfactory Sensitivity for Aliphatic Esters in Spider Monkeys (Ateles geoffroyi) Behavioral Neuroscience, 2003, 117, 1142-1149.	1.2	57
14	Olfactory sensitivity for aliphatic esters in squirrel monkeys and pigtail macaques. Behavioural Brain Research, 2002, 134, 165-174.	2.2	56
15	Detecting danger—or just another odorant? Olfactory sensitivity for the fox odor component 2,4,5-trimethylthiazoline in four species of mammals. Physiology and Behavior, 2005, 84, 211-215.	2.1	56
16	Olfactory Discrimination Ability of Asian Elephants (Elephas maximus) for Structurally Related Odorants. Chemical Senses, 2013, 38, 107-118.	2.0	55
17	Different forms of human odor memory: a developmental study. Neuroscience Letters, 1999, 272, 17-20.	2.1	50
18	Manual Laterality in Spider Monkeys (Ateles geoffroyi) Solving Visually and Tactually Guided Food-Reaching Tasks. Cortex, 1996, 32, 717-726.	2.4	48

#	Article	IF	CITATIONS
19	Odor structure–activity relationships compared in human and nonhuman primates Behavioral Neuroscience, 1999, 113, 998-1007.	1.2	48
20	Assessing olfactory performance in a new world primate, Saimiri sciureus. Physiology and Behavior, 1993, 53, 89-95.	2.1	47
21	Enantioselectivity of odor perception in honeybees (Apis mellifera carnica) Behavioral Neuroscience, 2001, 115, 632-639.	1.2	47
22	Failure to Demonstrate Systematic Changes in Olfactory Perception in the Course of Pregnancy: a Longitudinal Study. Chemical Senses, 1996, 21, 567-571.	2.0	46
23	Successful acquisition of an olfactory discrimination paradigm by spider monkeys, Ateles geoffroyi. Physiology and Behavior, 2003, 78, 321-329.	2.1	44
24	The Number of Functional Olfactory Receptor Genes and the Relative Size of Olfactory Brain Structures Are Poor Predictors of Olfactory Discrimination Performance with Enantiomers. Chemical Senses, 2005, 30, 171-175.	2.0	44
25	Olfactory sensitivity for aliphatic alcohols and aldehydes in spider monkeys (Ateles geoffroyi). American Journal of Physical Anthropology, 2006, 129, 112-120.	2.1	44
26	Food Preferences and Nutrient Composition in Captive Spider Monkeys, Ateles geoffroyi. International Journal of Primatology, 2000, 21, 671-683.	1.9	43
27	Enantioselectivity of odor perception in squirrel monkeys and humans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 277, R1098-R1103.	1.8	42
28	Perception of Trigeminal Chemosensory Qualities in the Elderly. Chemical Senses, 2001, 26, 681-689.	2.0	42
29	Olfactory Sensitivity for Six Predator Odorants in CD-1 Mice, Human Subjects, and Spider Monkeys. PLoS ONE, 2013, 8, e80621.	2.5	42
30	Olfactory sensitivity for aliphatic alcohols in squirrel monkeys and pigtail macaques. Journal of Experimental Biology, 2002, 205, 1633-43.	1.7	42
31	Ability to discriminate between related odor mixtures. Chemical Senses, 1992, 17, 403-415.	2.0	41
32	Olfactory discrimination ability for homologous series of aliphatic ketones and acetic esters. Behavioural Brain Research, 2001, 119, 193-201.	2.2	41
33	Gustatory thresholds for food-associated sugars in the spider monkey (Ateles geoffroyi). , 1996, 39, 189-193.		39
34	Odor structure-activity relationships of carboxylic acids correspond between squirrel monkeys and humans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1998, 274, R1639-R1645.	1.8	39
35	Chemical recognition of fruit ripeness in spider monkeys (Ateles geoffroyi). Scientific Reports, 2015, 5, 14895.	3.3	39
36	A two-choice discrimination method to assess olfactory performance in pigtailed macaques, Macaca nemestrina. Physiology and Behavior, 2001, 72, 511-519.	2.1	38

#	Article	IF	CITATIONS
37	Olfactory Sensitivity for Carboxylic Acids in Spider Monkeys and Pigtail Macaques. Chemical Senses, 2004, 29, 101-109.	2.0	38
38	Olfactory sensitivity for putrefaction-associated thiols and indols in three species of non-human primate. Journal of Experimental Biology, 2007, 210, 4169-4178.	1.7	38
39	Olfactory discrimination ability of CD-1 mice for a large array of enantiomers. Neuroscience, 2007, 144, 295-301.	2.3	38
40	Olfactory discrimination ability in short-tailed fruit bat,carollia perspicillata (Chiroptera:) Tj ETQq0 0 0 rgBT /Ove	erlock 10 T	f 50,622 Td (F
41	Olfactory Responsiveness to Two Odorous Steroids in Three Species of Nonhuman Primates. Chemical Senses, 2005, 30, 505-511.	2.0	35
42	Relative taste preferences for food-associated sugars in the spider monkey (Ateles geoffroyi). Primates, 1998, 39, 91-96.	1.1	33
43	Olfactory sensitivity for aliphatic aldehydes in CD-1 mice. Behavioural Brain Research, 2006, 167, 349-354.	2.2	33
44	A study of long-term odor memory in squirrel monkeys (Saimiri sciureus) Journal of Comparative Psychology (Washington, D C: 1983), 1996, 110, 125-130.	0.5	32
45	Gustatory responsiveness to polycose in four species of nonhuman primates. Journal of Chemical Ecology, 2001, 27, 1997-2011.	1.8	32
46	Olfactory Sensitivity for Enantiomers and Their Racemic MixturesA Comparative Study in CD-1 Mice and Spider Monkeys. Chemical Senses, 2006, 31, 655-664.	2.0	31
47	Olfactory and Visuospatial Learning and Memory Performance in Two Strains of Alzheimer's Disease Model Mice—A Longitudinal Study. PLoS ONE, 2011, 6, e19567.	2.5	31
48	A comparison of food preferences and nutrient composition in captive squirrel monkeys, Saimiri sciureus, and pigtail macaques, Macaca nemestrina. Physiology and Behavior, 2001, 73, 111-120.	2.1	30
49	Ability of Female Squirrel Monkeys (<i>Saimiri sciureus)</i> to Discriminate between Conspecific Urine Odours. Ethology, 1995, 99, 39-52.	1.1	30
50	Behavioral Responses of CD-1 Mice to Six Predator Odor Components. Chemical Senses, 2016, 41, 399-406.	2.0	30
51	Taste preference thresholds for food-associated sugars in the squirrel monkey (Saimiri sciureus). Primates, 1996, 37, 91-95.	1.1	29
52	Olfactory Discrimination Ability of Human Subjects for Enantiomers with an Isopropenyl Group at the Chiral Center. Chemical Senses, 2004, 29, 143-152.	2.0	29
53	Self-anointing behavior in free-ranging spider monkeys (Ateles geoffroyi) in Mexico. Primates, 2007, 48, 160-163.	1.1	28
54	Odor Interaction between Bourgeonal and Its Antagonist Undecanal. Chemical Senses, 2009, 34, 625-630.	2.0	28

#	Article	IF	CITATIONS
55	Successful acquisition of an olfactory discrimination test by Asian elephants, Elephas maximus. Physiology and Behavior, 2012, 105, 809-814.	2.1	28
56	Taste Preferences for Five Food-Associated Sugars in the Squirrel Monkey (Saimiri sciureus). Journal of Chemical Ecology, 1997, 23, 659-672.	1.8	27
57	Assessing olfactory performance in an Old World primate, Macaca nemestrina. Physiology and Behavior, 1998, 64, 521-527.	2.1	27
58	Red junglefowl have individual body odors. Journal of Experimental Biology, 2010, 213, 1619-1624.	1.7	27
59	Odor structure-activity relationships compared in human and nonhuman primates Behavioral Neuroscience, 1999, 113, 998-1007.	1.2	26
60	Behavioral Responses to Mammalian Blood Odor and a Blood Odor Component in Four Species of Large Carnivores. PLoS ONE, 2014, 9, e112694.	2.5	26
61	Taste difference thresholds for sucrose in two species of nonhuman primates. American Journal of Primatology, 1999, 48, 153-160.	1.7	25
62	Gustatory responsiveness to food-associated sugars and acids in pigtail macaques, Macaca nemestrina. Physiology and Behavior, 2000, 70, 495-504.	2.1	25
63	Olfactory-based interspecific recognition of human emotions: Horses (Equus ferus caballus) can recognize fear and happiness body odour from humans (Homo sapiens). Applied Animal Behaviour Science, 2020, 230, 105072.	1.9	25
64	Taste Preference Thresholds for Food-Associated Sugars in Baboons (Papio hamadryas anubis). International Journal of Primatology, 1999, 20, 25-34.	1.9	24
65	Olfactory sensitivity for aliphatic aldehydes in squirrel monkeys and pigtail macaques. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2003, 189, 263-271.	1.6	24
66	Gustatory responsiveness to monosodium glutamate and sodium chloride in four species of nonhuman primates. The Journal of Experimental Zoology, 2004, 301A, 898-905.	1.4	24
67	Olfactory Sensitivity and Odor Structure-Activity Relationships for Aliphatic Carboxylic Acids in CD-1 Mice. PLoS ONE, 2012, 7, e34301.	2.5	24
68	Sex-Specific Differences in Olfactory Sensitivity for Putative Human Pheromones in Nonhuman Primates Journal of Comparative Psychology (Washington, D C: 1983), 2006, 120, 106-112.	0.5	23
69	A study of correlates of hand preferences in squirrel monkeys (Saimiri sciureus). Primates, 1996, 37, 457-465.	1.1	22
70	Olfactory discrimination of aliphatic odorants at 1Âppm: too easy for CD-1 mice to show odor structure–activity relationships?. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2008, 194, 971-980.	1.6	21
71	Successful acquisition of an olfactory discrimination paradigm by South African fur seals, Arctocephalus pusillus. Physiology and Behavior, 2008, 93, 1033-1038.	2.1	20
72	Olfactory sensitivity for alkylpyrazines—a comparative study in CDâ€1 mice and spider monkeys. Journal of Experimental Zoology, 2009, 311A, 278-288.	1.2	20

#	Article	IF	Citations
73	Olfactory discrimination of aliphatic odorants in South African fur seals (arctocephalus pusillus) Journal of Comparative Psychology (Washington, D C: 1983), 2010, 124, 187-193.	0.5	20
74	Human and Animal Olfactory Capabilities Compared., 2017,, 81-82.		20
75	A mammalian blood odor component serves as an approach-avoidance cue across phylum border - from flies to humans. Scientific Reports, 2017, 7, 13635.	3.3	20
76	Food Avoidance Learning in Squirrel Monkeys and Common Marmosets. Learning and Memory, 1998, 5, 193-203.	1.3	20
77	Sensitivity to biologically relevant odours may exceed the sum of component thresholds. Chemoecology, 1990, 1, 139-141.	1.1	19
78	Odour perception in relation to age, general health, anthropometry and dental state. Archives of Gerontology and Geriatrics, 1997, 25, 263-275.	3.0	19
79	Food preferences and nutrient composition in captive pacas, Agouti paca (Rodentia, Dasyproctidae). Mammalian Biology, 2003, 68, 31-41.	1.5	19
80	Gustatory Responsiveness to food-associated acids in the spider monkey (Ateles geoffroyi). Primates, 2000, 41, 213-221.	1.1	18
81	Deviant olfactory experiences, magical ideation, and olfactory sensitivity: a study with healthy German and Japanese subjects. Psychiatry Research, 2002, 111, 21-33.	3.3	18
82	Human Male Superiority in Olfactory Sensitivity to the Sperm Attractant Odorant Bourgeonal. Chemical Senses, 2010, 35, 427-432.	2.0	18
83	Taste Difference Thresholds for Sucrose in Squirrel Monkeys <i>(Saimiri sciureus)</i> . Folia Primatologica, 1994, 63, 144-148.	0.7	17
84	Olfactory sensitivity for aliphatic ketones in squirrel monkeys and pigtail macaques. Experimental Brain Research, 2005, 160, 302-311.	1.5	17
85	Gustatory Responsiveness to Six Bitter Tastants in Three Species of Nonhuman Primates. Journal of Chemical Ecology, 2009, 35, 560-571.	1.8	17
86	Olfactory Detectability of L-Amino Acids in the European Honeybee (Apis mellifera). Chemical Senses, 2012, 37, 631-638.	2.0	17
87	Chimpanzee extractive foraging with excavating tools: Experimental modeling of the origins of human technology. PLoS ONE, 2019, 14, e0215644.	2.5	17
88	Olfactory Discrimination Ability for Aromatic Odorants as a Function of Oxygen Moiety. Chemical Senses, 2002, 27, 23-29.	2.0	16
89	The Frequency of Occurrence of Acyclic Monoterpene Alcohols in the Chemical Environment does not Determine Olfactory Sensitivity in Nonhuman Primates. Journal of Chemical Ecology, 2006, 32, 1317-1331.	1.8	16
90	Olfactory Perception of 6 Amino Acids by Human Subjects. Chemical Senses, 2010, 35, 279-287.	2.0	16

#	Article	IF	Citations
91	Olfactory sensitivity for six amino acids: a comparative study in CD-1 mice and spider monkeys. Amino Acids, 2012, 42, 1475-1485.	2.7	16
92	Laterality of tail resting posture in three species of New World primates. Neuropsychologia, 2000, 38, 1040-1046.	1.6	15
93	Maturation of binaural interaction components in auditory brainstem responses of young guinea pigs with monaural or binaural conductive hearing loss. European Archives of Oto-Rhino-Laryngology, 1992, 249, 325-328.	1.6	14
94	Taste Responsiveness to Food-Associated Acids in the Squirrel Monkey (Saimiri sciureus). Journal of Chemical Ecology, 1999, 25, 1623-1632.	1.8	14
95	Ultra-high olfactory sensitivity for the human sperm-attractant aromatic aldehyde bourgeonal in CD-1 mice. Neuroscience Research, 2011, 71, 355-360.	1.9	14
96	Maturation of auditory evoked potentials in young guinea pigs with binaural conductive hearing loss. European Archives of Oto-Rhino-Laryngology, 1993, 250, 362-365.	1.6	13
97	Olfactory sensitivity for sperm-attractant aromatic aldehydes: a comparative study in human subjects and spider monkeys. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2011, 197, 15-23.	1.6	13
98	Laterality in The Use of The Prehensile Tail in The Spider Monkey (Ateles geoffroyi). Cortex, 1998, 34, 123-130.	2.4	12
99	Olfactory sensitivity for "green odors―(aliphatic C6 alcohols and C6 aldehydes) — A comparative study in male CD-1 mice (Mus musculus) and female spider monkeys (Ateles geoffroyi). Pharmacology Biochemistry and Behavior, 2012, 101, 450-457.	2.9	12
100	Gestation period and between-birth intervals inCarollia perspicillata(Phyllostomatidae, Chiroptera). Journal of Zoology, 1990, 222, 697-702.	1.7	11
101	Olfactory Discrimination Ability for Aliphatic C6 Alcohols as a Function of Presence, Position, and Configuration of a Double Bond. Chemical Senses, 2005, 30, 755-760.	2.0	11
102	Food Preferences and Nutrient Composition in Captive White-handed Gibbons, Hylobates lar. International Journal of Primatology, 2008, 29, 1535-1547.	1.9	11
103	Gustatory Responsiveness of Black-and-White Ruffed Lemurs (Varecia variegata variegata) to Food-Associated Sugars. International Journal of Primatology, 2015, 36, 460-472.	1.9	11
104	Gustatory responsiveness to food-associated saccharides in European rabbits, Oryctolagus cuniculus. Physiology and Behavior, 2002, 76, 335-341.	2.1	10
105	Sour-Taste Tolerance in Four Species of Nonhuman Primates. Journal of Chemical Ecology, 2003, 29, 2637-2649.	1.8	10
106	Olfactory discrimination ability of CD-1 mice for aliphatic aldehydes as a function of stimulus concentration. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2007, 193, 955-961.	1.6	10
107	Facial expressions and other behavioral responses to pleasant and unpleasant tastes in cats (Felis) Tj ETQq $1\ 1$	0.784314 rg	BT ₁ Overlock
108	Taste responsiveness to two steviol glycosides in three species of nonhuman primates. Environmental Epigenetics, 2018, 64, 63-68.	1.8	10

#	Article	IF	CITATIONS
109	Taste Responsiveness of Spider Monkeys to Dietary Ethanol. Chemical Senses, 2019, 44, 631-638.	2.0	10
110	Olfactory Sensitivity for the Mammalian Blood Odor Component <i>Trans</i> -4,5-epoxy-(E)-2-decenal in CD-1 Mice. Perception, 2017, 46, 333-342.	1.2	9
111	How big is the gap between olfactory detection and recognition of aliphatic aldehydes?. Attention, Perception, and Psychophysics, 2010, 72, 806-812.	1.3	8
112	The Sensory Systems of Alouatta: Evolution with an Eye to Ecology. , 2015, , 317-336.		8
113	Olfactory Sensitivity and Odor Structure-Activity Relationships for Aliphatic Ketones in CD-1 Mice. Chemical Senses, 2014, 39, 415-424.	2.0	7
114	Taste difference thresholds for monosodium glutamate and sodium chloride in pigtail macaques (<i>Macaca nemestrina</i>) and spider monkeys (<i>Ateles geoffroyi</i>). American Journal of Primatology, 2008, 70, 839-847.	1.7	6
115	Olfactory discrimination ability of South African fur seals (Arctocephalus pusillus) for enantiomers. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2013, 199, 535-544.	1.6	6
116	Taste responsiveness of chimpanzees (Pan troglodytes) and black-handed spider monkeys (Ateles) Tj ETQq0 0 0	rgBT ₁ /Over	rlogk 10 Tf 50
117	Hand preferences in two unimanual and two bimanual coordinated tasks in the black-handed spider monkey (Ateles geoffroyi) Journal of Comparative Psychology (Washington, D C: 1983), 2018, 132, 220-229.	0.5	6
118	SURE, Why Not? The SUbstitution-Reciprocity Method for Measurement of Odor Quality Discrimination Thresholds: Replication and Extension to Nonhuman Primates. Chemical Senses, 2003, 28, 105-111.	2.0	5
119	Taste responsiveness of Western chimpanzees (Pan troglodytes verus) to five food-associated saccharides. Primates, 2019, 60, 29-39.	1.1	5
120	Olfactory Discrimination Learning in an Outbred and an Inbred Strain of Mice. Chemical Senses, 2015, 40, 489-496.	2.0	4
121	Behavioral responses of CD-1 mice to conspecific and heterospecific blood odors and to a blood odor component. Physiology and Behavior, 2018, 184, 205-210.	2.1	4
122	Meerkats (Suricata suricatta) are able to detect hidden food using olfactory cues alone. Physiology and Behavior, 2019, 202, 69-76.	2.1	4
123	Food preferences and nutrient composition in zoo-housed ring-tailed lemurs, Lemur catta. Physiology and Behavior, 2020, 226, 113125.	2.1	4
124	Non-visual senses in fruit selection by the mantled howler monkey (Alouatta palliata). Primates, 2022, 63, 293-303.	1.1	4
125	Gustatory responsiveness to the 20 proteinogenic amino acids in the spider monkey (Ateles geoffroyi). Physiology and Behavior, 2014, 127, 20-26.	2.1	3
126	Attractant or Repellent? Behavioral Responses to Mammalian Blood Odor and to a Blood Odor Component in a Mesopredator, the Meerkat (Suricata suricatta). Frontiers in Behavioral Neuroscience, 2018, 12, 152.	2.0	3

#	Article	IF	CITATIONS
127	Spider monkeys (Ateles geoffroyi) are less sensitive to the odor of aliphatic ketones than to the odor of other classes of aliphatic compounds. Neuroscience Research, 2015, 99, 46-54.	1.9	2
128	Olfactory sensitivity for mold-associated odorants in CD-1 mice and spider monkeys. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2018, 204, 821-833.	1.6	2
129	Visual detection and fruit selection by the mantled howler monkey (Alouatta palliata). American Journal of Primatology, 2020, 82, e23186.	1.7	2
130	Using morphometrics to quantitatively differentiate African wild dog footprints from domestic dog footprints - a pilot study. African Journal of Ecology, 2016, 54, 3-8.	0.9	1
131	Preferential hand use by captive chimpanzees (Pan troglodytes) in manual and tool digging. Primates, 2019, 60, 367-373.	1.1	1
132	Taste-induced facial responses in black-handed spider monkeys (Ateles geoffroyi). Behavioural Processes, 2021, 188, 104417.	1.1	1
133	Effects of an odor or taste stimulus applied to an artificial teat on the suckling behavior of newborn dairy calves. Journal of Animal Science and Technology, 2018, 60, 16.	2.5	0
134	Taste detection threshold of human (Homo sapiens) subjects and taste preference threshold of black-handed spider monkeys (Ateles geoffroyi) for the sugar substitute isomalt. Primates, 2021, 62, 389-394.	1.1	0
135	Diet selectivity in relation to food quality and availability by the endemic Perote squirrel (Xerospermophilus perotensis). Therya, 2018, 9, 121-127.	0.4	O