Guanhua Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2789792/publications.pdf

Version: 2024-02-01

		236925	345221
36	1,731	25	36
papers	citations	h-index	g-index
36	36	36	1627
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Metal Nanoparticles@Covalent Organic Framework@Enzymes: A Universal Platform for Fabricating a Metal–Enzyme Integrated Nanocatalyst. ACS Applied Materials & Interfaces, 2022, 14, 2881-2892.	8.0	44
2	Tuning the Microstructure of a Zwitterion-Functionalized Polyethylenimine Loose NF Membrane for Dye Desalination. Industrial & Engineering Chemistry Research, 2022, 61, 2245-2256.	3.7	12
3	Accelerating Electroenzymatic CO ₂ Reduction by Immobilizing Formate Dehydrogenase on Polyethylenimine-Modified Mesoporous Silica. ACS Sustainable Chemistry and Engineering, 2022, 10, 633-644.	6.7	15
4	Hierarchically porous metal organic framework immobilized formate dehydrogenase for enzyme electrocatalytic CO2 reduction. Chemical Engineering Journal, 2022, 450, 138164.	12.7	17
5	Bioinspired modification of molybdenum disulfide nanosheets to prepare a loose nanofiltration membrane for wastewater treatment. Journal of Water Process Engineering, 2021, 40, 101759.	5.6	16
6	<scp>Polydopamineâ€Encapsulated</scp> Dendritic Organosilica Nanoparticles as Amphiphilic Platforms for Highly Efficient Heterogeneous Catalysis in Water. Chinese Journal of Chemistry, 2021, 39, 1975-1982.	4.9	8
7	Enhanced water-selective performance of dual-layer hybrid membranes by incorporating carbon nanotubes. Chemical Engineering Science: X, 2021, 11, 100102.	1.5	4
8	High-Throughput Zwitterion-Modified MoS ₂ Membranes: Preparation and Application in Dye Desalination. Langmuir, 2021, 37, 417-427.	3.5	19
9	Compartmentalization of Biocatalysts by Immobilizing Bienzyme in Hollow ZIF-8 for Colorimetric Detection of Glucose and Phenol. Industrial & Engineering Chemistry Research, 2020, 59, 42-51.	3.7	35
10	Rapid preparation of Tannic acid (TA) based zwitterionic nanofiltration membrane via a multiple layer-by-layer (mLBL) assembly strategy for enhanced antifouling performance. Separation and Purification Technology, 2020, 253, 117519.	7.9	28
11	Preparation and Application of Bismuth/MXene Nano-Composite as Electrochemical Sensor for Heavy Metal Ions Detection. Nanomaterials, 2020, 10, 866.	4.1	66
12	Enhanced dispersibility of metal–organic frameworks (MOFs) in the organic phase <i>via</i> surface modification for TFN nanofiltration membrane preparation. RSC Advances, 2020, 10, 4045-4057.	3.6	75
13	Cascade degradation of organophosphorus pollutant by photoenzymatic integrated nanocatalyst. Journal of Chemical Technology and Biotechnology, 2020, 95, 2463-2472.	3.2	4
14	Facile synthesis of covalent organic framework derived Fe-COFs composites as a peroxidase-mimicking artificial enzyme. Nanoscale Advances, 2020, 2, 1036-1039.	4.6	12
15	Enhancing Permeability of Thin Film Nanocomposite Membranes via Covalent Linking of Polyamide with the Incorporated Metal–Organic Frameworks. Industrial & Engineering Chemistry Research, 2019, 58, 8772-8783.	3.7	43
16	Bioinspired Modification of Layer-Stacked Molybdenum Disulfide (MoS ₂) Membranes for Enhanced Nanofiltration Performance. ACS Omega, 2019, 4, 4012-4022.	3.5	34
17	Simple Purification and Immobilization of His-Tagged Organophosphohydrolase from Cell Culture Supernatant by Metal Organic Frameworks for Degradation of Organophosphorus Pesticides. Journal of Agricultural and Food Chemistry, 2019, 67, 13518-13525.	5.2	32
18	High-efficiency water-selective membranes from the solution-diffusion synergy of calcium alginate layer and covalent organic framework (COF) layer. Journal of Membrane Science, 2019, 572, 557-566.	8.2	48

#	Article	IF	Citations
19	Layer-by-layer self-assembled nanocomposite membranes via bio-inspired mineralization for pervaporation dehydration. Journal of Membrane Science, 2019, 570-571, 44-52.	8.2	22
20	Manipulation of interactions at membrane interfaces for energy and environmental applications. Progress in Polymer Science, 2018, 80, 125-152.	24.7	56
21	Water-selective permeation in hybrid membrane incorporating multi-functional hollow ZIF-8 nanospheres. Journal of Membrane Science, 2018, 555, 146-156.	8.2	57
22	Functionally graded membranes from nanoporous covalent organic frameworks for highly selective water permeation. Journal of Materials Chemistry A, 2018, 6, 583-591.	10.3	103
23	Hierarchical pore architectures from 2D covalent organic nanosheets for efficient water/alcohol separation. Journal of Membrane Science, 2018, 561, 79-88.	8.2	33
24	Graphene oxide quantum dots incorporated nanocomposite membranes with high water flux for pervaporative dehydration. Journal of Membrane Science, 2018, 563, 903-913.	8.2	55
25	Highly water-selective membranes based on hollow covalent organic frameworks with fast transport pathways. Journal of Membrane Science, 2018, 565, 331-341.	8.2	7 3
26	Preparation of ultrathin, robust membranes through reactive layer-by-layer (LbL) assembly for pervaporation dehydration. Journal of Membrane Science, 2017, 537, 229-238.	8.2	87
27	Hybrid membranes for pervaporation separations. Journal of Membrane Science, 2017, 541, 329-346.	8.2	174
28	Pervaporation performance comparison of hybrid membranes filled with two-dimensional ZIF-L nanosheets and zero-dimensional ZIF-8 nanoparticles. Journal of Membrane Science, 2017, 523, 185-196.	8.2	176
29	Enhanced pervaporative performance of hybrid membrane by incorporating amphiphilic carbonaceous material. Journal of Membrane Science, 2016, 520, 951-963.	8.2	11
30	Elevating the selectivity of layer-by-layer membranes by in situ bioinspired mineralization. Journal of Membrane Science, 2016, 520, 364-373.	8.2	32
31	Highly water-permeable and stable hybrid membrane with asymmetric covalent organic framework distribution. Journal of Membrane Science, 2016, 520, 583-595.	8.2	107
32	Enhancing the permeation selectivity of sodium alginate membrane by incorporating attapulgite nanorods for ethanol dehydration. RSC Advances, 2016, 6, 14381-14392.	3.6	38
33	Creation of hierarchical structures within membranes by incorporating mesoporous microcapsules for enhanced separation performance and stability. Journal of Materials Chemistry A, 2014, 2, 5267.	10.3	26
34	Enhanced desulfurization performance of PDMS membranes by incorporating silver decorated dopamine nanoparticles. Journal of Materials Chemistry A, 2014, 2, 12907.	10.3	35
35	Embedding dopamine nanoaggregates into a poly(dimethylsiloxane) membrane to confer controlled interactions and free volume for enhanced separation performance. Journal of Materials Chemistry A, 2013, 1, 3713.	10.3	90
36	Enhanced pervaporation performance of poly (dimethyl siloxane) membrane by incorporating titania microspheres with high silver ion loading. Journal of Membrane Science, 2011, 378, 382-392.	8.2	44