Vasiliki Giagka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2788453/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thin Film Encapsulation for LCP-Based Flexible Bioelectronic Implants: Comparison of Different Coating Materials Using Test Methodologies for Life-Time Estimation. Micromachines, 2022, 13, 544.	2.9	7
2	Monolithic integration of a smart temperature sensor on a modular silicon-based organ-on-a-chip device. Sensors and Actuators A: Physical, 2021, 317, 112439.	4.1	19
3	Silicone encapsulation of thin-film SiO _x , SiO _x N _y and SiC for modern electronic medical implants: a comparative long-term ageing study. Journal of Neural Engineering, 2021, 18, 055003.	3.5	13
4	Dorsal Root Ganglion (DRG) Versatile Stimulator Prototype Developed for Use in Locomotion Recovery Early Clinical Trials. , 2021, , .		0
5	Towards a Wireless System that Can Monitor the Encapsulation of mm-sized Active Implants in vivo for Bioelectronic Medicine. , 2021, , .		1
6	UV and IR Laser-Patterning for High-Density Thin-Film Neural Interfaces. , 2021, , .		1
7	Investigation of the long-term adhesion and barrier properties of a PDMS-Parylene stack with PECVD ceramic interlayers for the conformal encapsulation of neural implants. , 2021, , .		1
8	A Chip Integrity Monitor for Evaluating Moisture/Ion Ingress in mm-Sized Single-Chip Implants. IEEE Transactions on Biomedical Circuits and Systems, 2020, 14, 658-670.	4.0	7
9	PDMS-Parylene Adhesion Improvement via Ceramic Interlayers to Strengthen the Encapsulation of Active Neural Implants. , 2020, 2020, 3399-3402.		5
10	Bidirectional Bioelectronic Interfaces: System Design and Circuit Implications. IEEE Solid-State Circuits Magazine, 2020, 12, 30-46.	0.4	34
11	Circuit Design Considerations for Power-Efficient and Safe Implantable Electrical Neurostimulators. , 2020, , .		4
12	Pressure measurement of geometrically curved ultrasound transducer array for spatially specific stimulation of the vagus nerve. , 2019, , .		5
13	An Ultra High-Frequency 8-Channel Neurostimulator Circuit With \$ext{68}%\$ Peak Power Efficiency. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13, 882-892.	4.0	16
14	Comments on "Compact, Energy-Efficient High-Frequency Switched Capacitor Neural Stimulator With Active Charge Balancing― IEEE Transactions on Biomedical Circuits and Systems, 2019, 13, 480-480.	4.0	0
15	A Chip Integrity Monitor for Evaluating Long-term Encapsulation Performance Within Active Flexible Implants. , 2019, , .		3
16	Effect of Signals on the Encapsulation Performance of Parylene Coated Platinum Tracks for Active Medical Implants. , 2019, 2019, 3840-3844.		10
17	Towards a Microfabricated Flexible Graphene-Based Active Implant for Tissue Monitoring During Optogenetic Spinal Cord Stimulation. , 2019, , .		0
18	An Ultrasonically Powered and Controlled Ultra-High-Frequency Biphasic Electrical Neurostimulator. , 2018, , .		9

VASILIKI GIAGKA

#	Article	IF	CITATIONS
19	An Energy-Efficient, Inexpensive, Spinal Cord Stimulator with Adaptive Voltage Compliance for Freely Moving Rats. , 2018, 2018, 2937-2940.		6
20	Design and Custom Fabrication of a Smart Temperature Sensor for an Organ-on-a-chip Platform. , 2018, , .		1
21	Realizing flexible bioelectronic medicines for accessing the peripheral nerves – technology considerations. Bioelectronic Medicine, 2018, 4, 8.	2.3	45
22	Towards a wearable near infrared spectroscopic probe for monitoring concentrations of multiple chromophores in biological tissue <i>in vivo</i> . Review of Scientific Instruments, 2016, 87, 065112.	1.3	44
23	Flexible active electrode arrays with ASICs that fit inside the rat's spinal canal. Biomedical Microdevices, 2015, 17, 106.	2.8	16
24	An Implantable Versatile Electrode-Driving ASIC for Chronic Epidural Stimulation in Rats. IEEE Transactions on Biomedical Circuits and Systems, 2015, 9, 387-400.	4.0	21
25	Evaluation and optimization of the mechanical strength of bonds between metal foil and aluminium pads on thin ASICs using gold ball studs as micro-rivets. , 2014, , .		2
26	Controlled silicon IC thinning on individual die level for active implant integration using a purely mechanical process. , 2014, , .		5
27	A dedicated electrode driving ASIC for epidural spinal cord stimulation in rats. , 2013, , .		4