
Sara Rodriguez-Enriquez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2788399/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selective degradation of mitochondria by mitophagy. Archives of Biochemistry and Biophysics, 2007, 462, 245-253.	3.0	1,385
2	Energy metabolism in tumor cells. FEBS Journal, 2007, 274, 1393-1418.	4.7	873
3	HIF-1α Modulates Energy Metabolism in Cancer Cells by Inducing Over-Expression of Specific Glycolytic Isoforms. Mini-Reviews in Medicinal Chemistry, 2009, 9, 1084-1101.	2.4	391
4	Tracker Dyes to Probe Mitochondrial Autophagy (Mitophagy) in Rat Hepatocytes. Autophagy, 2006, 2, 39-46.	9.1	316
5	The causes of cancer revisited: "Mitochondrial malignancy―and ROS-induced oncogenic transformation – Why mitochondria are targets for cancer therapy. Molecular Aspects of Medicine, 2010, 31, 145-170.	6.4	299
6	Role of mitochondrial permeability transition pores in mitochondrial autophagy. International Journal of Biochemistry and Cell Biology, 2004, 36, 2463-2472.	2.8	229
7	Mitochondrial Targeting of Vitamin E Succinate Enhances Its Pro-apoptotic and Anti-cancer Activity via Mitochondrial Complex II. Journal of Biological Chemistry, 2011, 286, 3717-3728.	3.4	171
8	Determining and understanding the control of glycolysis in fast-growth tumor cells. FEBS Journal, 2006, 273, 1975-1988.	4.7	168
9	Metabolic Control Analysis: A Tool for Designing Strategies to Manipulate Metabolic Pathways. Journal of Biomedicine and Biotechnology, 2008, 2008, 1-30.	3.0	160
10	Who controls the ATP supply in cancer cells? Biochemistry lessons to understand cancer energy metabolism. International Journal of Biochemistry and Cell Biology, 2014, 50, 10-23.	2.8	158
11	Bioenergetic pathways in tumor mitochondria as targets for cancer therapy and the importance of the ROS-induced apoptotic trigger. Molecular Aspects of Medicine, 2010, 31, 29-59.	6.4	146
12	Suppression of Tumor Growth <i>In vivo</i> by the Mitocan α-tocopheryl Succinate Requires Respiratory Complex II. Clinical Cancer Research, 2009, 15, 1593-1600.	7.0	125
13	Energy metabolism transition in multi ellular human tumor spheroids. Journal of Cellular Physiology, 2008, 216, 189-197.	4.1	121
14	Oxidative phosphorylation is impaired by prolonged hypoxia in breast and possibly in cervix carcinoma. International Journal of Biochemistry and Cell Biology, 2010, 42, 1744-1751.	2.8	117
15	Multisite control of the Crabtree effect in ascites hepatoma cells. FEBS Journal, 2001, 268, 2512-2519.	0.2	116
16	The bioenergetics of cancer: Is glycolysis the main ATP supplier in all tumor cells?. BioFactors, 2009, 35, 209-225.	5.4	116
17	Modeling cancer glycolysis. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 755-767.	1.0	115
18	Cas Ilgly Induces Apoptosis in Glioma C6 Cells In Vitro and In Vivo through Caspase-Dependent and Caspase-Independent Mechanisms. Neoplasia, 2005, 7, 563-574.	5.3	112

#	Article	IF	CITATIONS
19	Copper compound induces autophagy and apoptosis of glioma cells by reactive oxygen species and jnk activation. BMC Cancer, 2012, 12, 156.	2.6	109
20	Inhibitors of Succinate: Quinone Reductase/Complex II Regulate Production of Mitochondrial Reactive Oxygen Species and Protect Normal Cells from Ischemic Damage but Induce Specific Cancer Cell Death. Pharmaceutical Research, 2011, 28, 2695-2730.	3.5	108
21	Targeting of cancer energy metabolism. Molecular Nutrition and Food Research, 2009, 53, 29-48.	3.3	105
22	Control of cellular proliferation by modulation of oxidative phosphorylation in human and rodent fast-growing tumor cells. Toxicology and Applied Pharmacology, 2006, 215, 208-217.	2.8	102
23	Roles of mitophagy and the mitochondrial permeability transition in remodeling of cultured rat hepatocytes. Autophagy, 2009, 5, 1099-1106.	9.1	101
24	Kinetics of transport and phosphorylation of glucose in cancer cells. Journal of Cellular Physiology, 2009, 221, 552-559.	4.1	83
25	Metabolic control analysis indicates a change of strategy in the treatment of cancer. Mitochondrion, 2010, 10, 626-639.	3.4	77
26	Substrate Oxidation and ATP Supply in AS-30D Hepatoma Cells. Archives of Biochemistry and Biophysics, 2000, 375, 21-30.	3.0	74
27	Resveratrol inhibits cancer cell proliferation by impairing oxidative phosphorylation and inducing oxidative stress. Toxicology and Applied Pharmacology, 2019, 370, 65-77.	2.8	65
28	Reactive oxygen species are generated by the respiratory complexÂ <scp>II</scp> – evidence for lack of contribution of the reverse electron flow in complexÂ <scp>I</scp> . FEBS Journal, 2013, 280, 927-938.	4.7	60
29	Modeling cancer glycolysis under hypoglycemia, and the role played by the differential expression of glycolytic isoforms. FEBS Journal, 2014, 281, 3325-3345.	4.7	55
30	Mitochondrial free fatty acid \hat{l}^2 -oxidation supports oxidative phosphorylation and proliferation in cancer cells. International Journal of Biochemistry and Cell Biology, 2015, 65, 209-221.	2.8	55
31	Anti-mitochondrial therapy in human breast cancer multi-cellular spheroids. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 541-551.	4.1	52
32	Celecoxib inhibits mitochondrial O2 consumption, promoting ROS dependent death of murine and human metastatic cancer cells via the apoptotic signalling pathway. Biochemical Pharmacology, 2018, 154, 318-334.	4.4	51
33	Phosphofructokinase type 1 kinetics, isoform expression, and gene polymorphisms in cancer cells. Journal of Cellular Biochemistry, 2012, 113, 1692-1703.	2.6	48
34	Control of the NADPH supply for oxidative stress handling in cancer cells. Free Radical Biology and Medicine, 2017, 112, 149-161.	2.9	39
35	Understanding the cancer cell phenotype beyond the limitations of current omics analyses. FEBS Journal, 2016, 283, 54-73.	4.7	38
36	Hitting the Bull's-Eye in Metastatic Cancers—NSAIDs Elevate ROS in Mitochondria, Inducing Malignant Cell Death. Pharmaceuticals, 2015, 8, 62-106.	3.8	37

#	Article	IF	CITATIONS
37	Transcriptional Regulation of Energy Metabolism in Cancer Cells. Cells, 2019, 8, 1225.	4.1	37
38	Hypoglycemia Enhances Epithelialâ€Mesenchymal Transition and Invasiveness, and Restrains the Warburg Phenotype, in Hypoxic HeLa Cell Cultures and Microspheroids. Journal of Cellular Physiology, 2017, 232, 1346-1359.	4.1	36
39	Enhanced alternative oxidase and antioxidant enzymes under Cd2+ stress in Euglena. Journal of Bioenergetics and Biomembranes, 2008, 40, 227-235.	2.3	35
40	Dual regulation of energy metabolism by p53 in human cervix and breast cancer cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 3266-3278.	4.1	35
41	Phytochelatin-cadmium-sulfide high-molecular-mass complexes of Euglena gracilis. FEBS Journal, 2006, 273, 5703-5713.	4.7	34
42	Energy Metabolism Drugs Block Triple Negative Breast Metastatic Cancer Cell Phenotype. Molecular Pharmaceutics, 2018, 15, 2151-2164.	4.6	34
43	Oxidative Phosphorylation as a Target to Arrest Malignant Neoplasias. Current Medicinal Chemistry, 2011, 18, 3156-3167.	2.4	33
44	Casiopeina II-gly and bromo-pyruvate inhibition of tumor hexokinase, glycolysis, and oxidative phosphorylation. Archives of Toxicology, 2012, 86, 753-766.	4.2	33
45	Biochemistry and Physiology of Heavy Metal Resistance and Accumulation in Euglena. Advances in Experimental Medicine and Biology, 2017, 979, 91-121.	1.6	33
46	Molecular mechanism for the selective impairment of cancer mitochondrial function by a mitochondrially targeted vitamin E analogue. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 1597-1607.	1.0	32
47	Control of the NADPH supply and GSH recycling for oxidative stress management in hepatoma and liver mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 1138-1150.	1.0	31
48	Assessment of the low inhibitory specificity of oxamate, aminooxyacetate and dichloroacetate on cancer energy metabolism. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 3221-3236.	2.4	28
49	Repurposing drugs as proâ€oxidant redox modifiers to eliminate cancer stem cells and improve the treatment of advanced stage cancers. Medicinal Research Reviews, 2019, 39, 2397-2426.	10.5	26
50	NFâ€kappa B is required for the development of tumor spheroids. Journal of Cellular Biochemistry, 2009, 108, 169-180.	2.6	25
51	Multi-biomarker pattern for tumor identification and prognosis. Journal of Cellular Biochemistry, 2011, 112, 2703-2715.	2.6	25
52	Non-Steroidal Anti-Inflammatory Drugs Increase Cisplatin, Paclitaxel, and Doxorubicin Efficacy against Human Cervix Cancer Cells. Pharmaceuticals, 2020, 13, 463.	3.8	25
53	Canonical and new generation anticancer drugs also target energy metabolism. Archives of Toxicology, 2014, 88, 1327-1350.	4.2	24
54	Mutant p53 ^{R248Q} downregulates oxidative phosphorylation and upregulates glycolysis under normoxia and hypoxia in human cervix cancer cells. Journal of Cellular Physiology, 2019, 234, 5524-5536.	4.1	24

#	Article	IF	CITATIONS
55	GPI/AMF inhibition blocks the development of the metastatic phenotype of mature multi-cellular tumor spheroids. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 1043-1053.	4.1	23
56	Post-conditioning Preserves Glycolytic ATP During Early Reperfusion: A survival Mechanism for the Reperfused Heart. Cellular Physiology and Biochemistry, 2008, 22, 635-644.	1.6	22
57	Hypoxia increases chemoresistance in human medulloblastoma DAOY cells via hypoxiaâ€ʻinducible factor 11±â€ʻmediated downregulation of the CYP2B6, CYP3A4 and CYP3A5 enzymes and inhibition of cell proliferation. Oncology Reports, 2018, 41, 178-190.	2.6	22
58	Gamma-glutamylcysteine synthetase and tryparedoxin 1 exert high control on the antioxidant system in Trypanosoma cruzi contributing to drug resistance and infectivity. Redox Biology, 2019, 26, 101231.	9.0	22
59	Metabolic changes induced by cold stress in rat liver mitochondria. Journal of Bioenergetics and Biomembranes, 2001, 33, 289-301.	2.3	20
60	Glycoprotein Ib activation by thrombin stimulates the energy metabolism in human platelets. PLoS ONE, 2017, 12, e0182374.	2.5	19
61	On the mechanism by which 6-ketocholestanol protects mitochondria against uncoupling-induced Ca2+efflux. FEBS Letters, 1996, 379, 305-308.	2.8	16
62	Physiological Role of Glutamate Dehydrogenase in Cancer Cells. Frontiers in Oncology, 2020, 10, 429.	2.8	16
63	HPI/AMF inhibition halts the development of the aggressive phenotype of breast cancer stem cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 1679-1690.	4.1	12
64	Heart myxoma develops oncogenic and metastatic phenotype. Journal of Cancer Research and Clinical Oncology, 2019, 145, 1283-1295.	2.5	10
65	Inhibition of Non-flux-Controlling Enzymes Deters Cancer Glycolysis by Accumulation of Regulatory Metabolites of Controlling Steps. Frontiers in Physiology, 2016, 7, 412.	2.8	9
66	Kinetic modeling of glucose central metabolism in hepatocytes and hepatoma cells. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129687.	2.4	9
67	Acetate Promotes a Differential Energy Metabolic Response in Human HCT 116 and COLO 205 Colon Cancer Cells Impacting Cancer Cell Growth and Invasiveness. Frontiers in Oncology, 2021, 11, 697408.	2.8	7
68	On the properties of calcium-induced permeability transition in neonatal heart mitochondria. Journal of Bioenergetics and Biomembranes, 2011, 43, 757-764.	2.3	6
69	Regulatory role of acetylation on enzyme activity and fluxes of energy metabolism pathways. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 130021.	2.4	6
70	Identification of a metabolic and canonical biomarker signature in Mexican HR+/HER2â^, triple positive and triple-negative breast cancer patients. International Journal of Oncology, 2014, 45, 2549-2559.	3.3	5
71	Oxidized ATM protein kinase is a new signal transduction player that regulates glycolysis in CAFs as well as tumor growth and metastasis. EBioMedicine, 2019, 41, 24-25.	6.1	4
72	Systems Biology Approaches to Cancer Energy Metabolism. Springer Series in Biophysics, 2014, , 213-239.	0.4	3

#	Article	IF	CITATIONS
73	The intracellular water volume modulates the accumulation of cadmium in Euglena gracilis. Algal Research, 2020, 46, 101774.	4.6	3
74	Curcumin promotes oxidative stress, apoptosis and autophagy in H9c2 rat cardiomyoblasts. Molecular and Cellular Toxicology, 2020, 16, 441-453.	1.7	3
75	Celecoxib and Dimethylcelecoxib Block Oxidative Phosphorylation, Epithelial-Mesenchymal Transition and Invasiveness in Breast Cancer Stem Cells. Current Medicinal Chemistry, 2022, 29, 2719-2735.	2.4	3
76	High expression of both desmoplastic stroma and epithelial to mesenchymal transition markers associate with shorter survival in pancreatic ductal adenocarcinoma. European Journal of Histochemistry, 2022, 66, .	1.5	3
77	Editorial: Metabolic Plasticity of Cancer. Frontiers in Oncology, 2020, 10, 599723.	2.8	1