Suzanne L Topalian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2788264/publications.pdf

Version: 2024-02-01

63 papers

51,481 citations

46 h-index 58 g-index

64 all docs 64
docs citations

64 times ranked 47944 citing authors

#	Article	IF	CITATIONS
1	Neoadjuvant Therapy for Melanoma: A U.S. Food and Drug Administration—Melanoma Research Alliance Public Workshop. Clinical Cancer Research, 2021, 27, 394-401.	3.2	5
2	Analysis of multispectral imaging with the AstroPath platform informs efficacy of PD-1 blockade. Science, 2021, 372, .	6.0	114
3	Neoadjuvant nivolumab for patients with resectable HPV-positive and HPV-negative squamous cell carcinomas of the head and neck in the CheckMate 358 trial. , 2021, 9, e002568.		87
4	The Genetic Evolution of Treatment-Resistant Cutaneous, Acral, and Uveal Melanomas. Clinical Cancer Research, 2021, 27, 1516-1525.	3.2	6
5	Pan-Tumor Pathologic Scoring of Response to PD-(L)1 Blockade. Clinical Cancer Research, 2020, 26, 545-551.	3.2	100
6	Integrative Tumor and Immune Cell Multi-omic Analyses Predict Response to Immune Checkpoint Blockade in Melanoma. Cell Reports Medicine, 2020, 1, 100139.	3.3	45
7	Conserved Interferon-Î ³ Signaling Drives Clinical Response to Immune Checkpoint Blockade Therapy in Melanoma. Cancer Cell, 2020, 38, 500-515.e3.	7.7	203
8	Neoadjuvant checkpoint blockade for cancer immunotherapy. Science, 2020, 367, .	6.0	553
9	Defining tumor resistance to PD-1 pathway blockade: recommendations from the first meeting of the SITC Immunotherapy Resistance Taskforce. , 2020, 8, e000398.		125
10	Neoadjuvant Nivolumab for Patients With Resectable Merkel Cell Carcinoma in the CheckMate 358 Trial. Journal of Clinical Oncology, 2020, 38, 2476-2487.	0.8	152
11	Five-Year Survival and Correlates Among Patients With Advanced Melanoma, Renal Cell Carcinoma, or Non–Small Cell Lung Cancer Treated With Nivolumab. JAMA Oncology, 2019, 5, 1411.	3.4	388
12	Mechanisms regulating PD-L1 expression on tumor and immune cells. , 2019, 7, 305.		291
13	Neoadjuvant PD-1 Blockade in Resectable Lung Cancer. New England Journal of Medicine, 2018, 378, 1976-1986.	13.9	1,495
14	Merkel cell polyomavirus-specific immune responses in patients with Merkel cell carcinoma receiving anti-PD-1 therapy., 2018, 6, 131.		35
15	Multidimensional, quantitative assessment of PD-1/PD-L1 expression in patients with Merkel cell carcinoma and association with response to pembrolizumab., 2018, 6, 99.		129
16	Transcriptional Mechanisms of Resistance to Anti–PD-1 Therapy. Clinical Cancer Research, 2017, 23, 3168-3180.	3.2	67
17	Association of HIV Status With Local Immune Response to Anal Squamous Cell Carcinoma. JAMA Oncology, 2017, 3, 974.	3.4	65
18	Safety Profile of Nivolumab Monotherapy: A Pooled Analysis of Patients With Advanced Melanoma. Journal of Clinical Oncology, 2017, 35, 785-792.	0.8	930

#	Article	IF	CITATIONS
19	Targeting Immune Checkpoints in Cancer Therapy. JAMA - Journal of the American Medical Association, 2017, 318, 1647.	3.8	111
20	Identification and Characterization of Complex Glycosylated Peptides Presented by the MHC Class II Processing Pathway in Melanoma. Journal of Proteome Research, 2017, 16, 228-237.	1.8	34
21	Th17 immune microenvironment in Epstein-Barr virus–negative Hodgkin lymphoma: implications for immunotherapy. Blood Advances, 2017, 1, 1324-1334.	2.5	36
22	Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nature Reviews Cancer, 2016, 16, 275-287.	12.8	2,133
23	PD-1 Blockade with Pembrolizumab in Advanced Merkel-Cell Carcinoma. New England Journal of Medicine, 2016, 374, 2542-2552.	13.9	1,048
24	The Intratumoral Balance between Metabolic and Immunologic Gene Expression Is Associated with Anti–PD-1 Response in Patients with Renal Cell Carcinoma. Cancer Immunology Research, 2016, 4, 726-733.	1.6	133
25	Society for immunotherapy of cancer (SITC) statement on the proposed changes to the common rule. , 2016, 4, 37.		1
26	Safety and immunologic correlates of Melanoma GVAX, a GM-CSF secreting allogeneic melanoma cell vaccine administered in the adjuvant setting. Journal of Translational Medicine, 2015, 13, 214.	1.8	84
27	Differential Expression of Immune-Regulatory Genes Associated with PD-L1 Display in Melanoma: Implications for PD-1 Pathway Blockade. Clinical Cancer Research, 2015, 21, 3969-3976.	3.2	205
28	Antagonists of PD-1 and PD-L1 in Cancer Treatment. Seminars in Oncology, 2015, 42, 587-600.	0.8	259
29	Survival, Durable Response, and Long-Term Safety in Patients With Previously Treated Advanced Renal Cell Carcinoma Receiving Nivolumab. Journal of Clinical Oncology, 2015, 33, 2013-2020.	0.8	385
30	Overall Survival and Long-Term Safety of Nivolumab (Anti–Programmed Death 1 Antibody, BMS-936558,) Tj ET Clinical Oncology, 2015, 33, 2004-2012.	Qq0 0 0 r 0.8	gBT /Overloc 1,035
31	Immune Checkpoint Blockade: A Common Denominator Approach to Cancer Therapy. Cancer Cell, 2015, 27, 450-461.	7.7	3,266
32	PD-L1 Expression in Melanocytic Lesions Does Not Correlate with the BRAF V600E Mutation. Cancer Immunology Research, 2015, 3, 110-115.	1.6	45
33	Balance and Imbalance in the Immune System: Life on the Edge. Immunity, 2014, 41, 682-684.	6.6	33
34	Association of PD-1, PD-1 Ligands, and Other Features of the Tumor Immune Microenvironment with Response to Anti–PD-1 Therapy. Clinical Cancer Research, 2014, 20, 5064-5074.	3.2	2,050
35	Survival, Durable Tumor Remission, and Long-Term Safety in Patients With Advanced Melanoma Receiving Nivolumab. Journal of Clinical Oncology, 2014, 32, 1020-1030.	0.8	2,015
36	Evidence for a Role of the PD-1:PD-L1 Pathway in Immune Resistance of HPV-Associated Head and Neck Squamous Cell Carcinoma. Cancer Research, 2013, 73, 1733-1741.	0.4	678

#	Article	lF	CITATIONS
37	Durable Cancer Regression Off-Treatment and Effective Reinduction Therapy with an Anti-PD-1 Antibody. Clinical Cancer Research, 2013, 19, 462-468.	3.2	485
38	Structure-Based Design of Altered MHC Class II–Restricted Peptide Ligands with Heterogeneous Immunogenicity. Journal of Immunology, 2013, 191, 5097-5106.	0.4	18
39	PD-L1 Expression in the Merkel Cell Carcinoma Microenvironment: Association with Inflammation, Merkel Cell Polyomavirus, and Overall Survival. Cancer Immunology Research, 2013, 1, 54-63.	1.6	333
40	Alterations of immune response of non-small cell lung cancer with Azacytidine. Oncotarget, 2013, 4, 2067-2079.	0.8	336
41	Colocalization of Inflammatory Response with B7-H1 Expression in Human Melanocytic Lesions Supports an Adaptive Resistance Mechanism of Immune Escape. Science Translational Medicine, 2012, 4, 127ra37.	5.8	1,837
42	Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Current Opinion in Immunology, 2012, 24, 207-212.	2.4	1,186
43	Structural insights into the editing of germ-line-encoded interactions between T-cell receptor and MHC class II by VÂ CDR3. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14960-14965.	3.3	39
44	Safety, Activity, and Immune Correlates of Anti–PD-1 Antibody in Cancer. New England Journal of Medicine, 2012, 366, 2443-2454.	13.9	10,727
45	Safety and Activity of Anti–PD-L1 Antibody in Patients with Advanced Cancer. New England Journal of Medicine, 2012, 366, 2455-2465.	13.9	6,820
46	Cancer Immunotherapy Comes of Age. Journal of Clinical Oncology, 2011, 29, 4828-4836.	0.8	411
47	Opportunities and Challenges in the Development of Experimental Drug Combinations for Cancer. Journal of the National Cancer Institute, 2011, 103, 1222-1226.	3.0	100
48	Phase I Study of Single-Agent Anti–Programmed Death-1 (MDX-1106) in Refractory Solid Tumors: Safety, Clinical Activity, Pharmacodynamics, and Immunologic Correlates. Journal of Clinical Oncology, 2010, 28, 3167-3175.	0.8	2,667
49	Structural Basis for the Presentation of Tumor-Associated MHC Class II-Restricted Phosphopeptides to CD4+ T Cells. Journal of Molecular Biology, 2010, 399, 596-603.	2.0	37
50	Identification of tumor-associated, MHC class II-restricted phosphopeptides as targets for immunotherapy. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12073-12078.	3.3	98
51	Tumorâ€associated MHC IIâ€restricted phosphopeptides: New targets for immune recognition. FASEB Journal, 2008, 22, 1079.1.	0.2	1
52	Ipilimumab (Anti-CTLA4 Antibody) Causes Regression of Metastatic Renal Cell Cancer Associated With Enteritis and Hypophysitis. Journal of Immunotherapy, 2007, 30, 825-830.	1.2	656
53	Structural basis for the recognition of mutant self by a tumor-specific, MHC class ll–restricted T cell receptor. Nature Immunology, 2007, 8, 398-408.	7.0	91
54	Cancer Regression in Patients After Transfer of Genetically Engineered Lymphocytes. Science, 2006, 314, 126-129.	6.0	2,352

#	Article	IF	CITATIONS
55	Intrapatient Dose Escalation of Anti–CTLA-4 Antibody in Patients With Metastatic Melanoma. Journal of Immunotherapy, 2006, 29, 455-463.	1.2	246
56	Enterocolitis in Patients With Cancer After Antibody Blockade of Cytotoxic T-Lymphocyte–Associated Antigen 4. Journal of Clinical Oncology, 2006, 24, 2283-2289.	0.8	794
57	Evaluation of Prime/Boost Regimens Using Recombinant Poxvirus/Tyrosinase Vaccines for the Treatment of Patients with Metastatic Melanoma. Clinical Cancer Research, 2006, 12, 2526-2537.	3.2	50
58	Cytotoxic T-Lymphocyte-Associated Antigen-4 Blockage Can Induce Autoimmune Hypophysitis in Patients With Metastatic Melanoma and Renal Cancer. Journal of Immunotherapy, 2005, 28, 593-598.	1.2	315
59	Autoimmunity Correlates With Tumor Regression in Patients With Metastatic Melanoma Treated With Anti–Cytotoxic T-Lymphocyte Antigen-4. Journal of Clinical Oncology, 2005, 23, 6043-6053.	0.8	989
60	Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8372-8377.	3.3	1,482
61	A Phase I Study of Nonmyeloablative Chemotherapy and Adoptive Transfer of Autologous Tumor Antigen-Specific T Lymphocytes in Patients With Metastatic Melanoma. Journal of Immunotherapy, 2002, 25, 243-251.	1.2	326
62	A phase I study of nonmyeloablative chemotherapy and adoptive transfer of autologous tumor antigen-specific T lymphocytes in patients with metastatic melanoma. Journal of Immunotherapy, 2002, 25, 243-51.	1.2	139
63	The role of CD4+ T cell responses in antitumor immunity. Current Opinion in Immunology, 1998, 10, 588-594.	2.4	593