Michael G Muszynski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2786313/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Control of Spikelet Meristem Identity by the branched silkless1 Gene in Maize. Science, 2002, 298, 1238-1241.	12.6	270
2	The <i>FT</i> -Like <i>ZCN8</i> Gene Functions as a Floral Activator and Is Involved in Photoperiod Sensitivity in Maize Â. Plant Cell, 2011, 23, 942-960.	6.6	265
3	Conserved plant genes with similarity to mammalian de novo DNA methyltransferases. Proceedings of the United States of America, 2000, 97, 4979-4984.	7.1	222
4	Duplicated <i>fie</i> Genes in Maize. Plant Cell, 2003, 15, 425-438.	6.6	173
5	delayed flowering1 Encodes a Basic Leucine Zipper Protein That Mediates Floral Inductive Signals at the Shoot Apex in Maize. Plant Physiology, 2006, 142, 1523-1536.	4.8	161
6	Dynamic Changes in ANGUSTIFOLIA3 Complex Composition Reveal a Growth Regulatory Mechanism in the Maize Leaf. Plant Cell, 2015, 27, 1605-1619.	6.6	154
7	The Maize Homologue of the Cell Cycle Checkpoint Protein MAD2 Reveals Kinetochore Substructure and Contrasting Mitotic and Meiotic Localization Patterns. Journal of Cell Biology, 1999, 145, 425-435.	5.2	125
8	Genome-Wide Distribution of Transposed <i>Dissociation</i> Elements in Maize Â. Plant Cell, 2010, 22, 1667-1685.	6.6	123
9	A Maize Homolog of Mammalian CENPC Is a Constitutive Component of the Inner Kinetochore. Plant Cell, 1999, 11, 1227-1238.	6.6	122
10	Maize Chromomethylase <i>Zea methyltransferase2</i> Is Required for CpNpG Methylation. Plant Cell, 2001, 13, 1919-1928.	6.6	120
11	Involvement of the MADS-Box Gene <i>ZMM4</i> in Floral Induction and Inflorescence Development in Maize Â. Plant Physiology, 2008, 147, 2054-2069.	4.8	117
12	The Boron Efflux Transporter ROTTEN EAR Is Required for Maize Inflorescence Development and Fertility Â. Plant Cell, 2014, 26, 2962-2977.	6.6	91
13	Altered expression of maize PLASTOCHRON1 enhances biomass and seed yield by extending cell division duration. Nature Communications, 2017, 8, 14752.	12.8	89
14	Maize Chromomethylase Zea methyltransferase2 Is Required for CpNpG Methylation. Plant Cell, 2001, 13, 1919-1928.	6.6	86
15	Characterization of Grainâ€Filling Patterns in Diverse Maize Germplasm. Crop Science, 2009, 49, 999-1009.	1.8	74
16	Maximum Likelihood Methods Reveal Conservation of Function Among Closely Related Kinesin Families. Journal of Molecular Evolution, 2002, 54, 42-53.	1.8	64
17	tie-dyed1 Regulates Carbohydrate Accumulation in Maize Leaves. Plant Physiology, 2006, 142, 1511-1522.	4.8	59
18	Three <i><scp>FLOWERING LOCUS</scp> T</i> â€like genes function as potential florigens and mediate photoperiod response in sorghum. New Phytologist, 2016, 210, 946-959.	7.3	59

MICHAEL G MUSZYNSKI

#	Article	IF	CITATIONS
19	Molecular Analysis of Two Pyruvate Dehydrogenase Kinases from Maize. Journal of Biological Chemistry, 1998, 273, 26618-26623.	3.4	41
20	Regional mutagenesis using Dissociation in maize. Methods, 2009, 49, 248-254.	3.8	40
21	Beyond flowering time. Plant Signaling and Behavior, 2011, 6, 1267-1270.	2.4	39
22	The Dihydrolipoamide S-Acetyltransferase Subunit of the Mitochondrial Pyruvate Dehydrogenase Complex from Maize Contains a Single Lipoyl Domain. Journal of Biological Chemistry, 1999, 274, 21769-21775.	3.4	33
23	Characterization of a gene from Zea mays related to the Arabidopsis flowering-time gene LUMINIDEPENDENS. Plant Molecular Biology, 2000, 44, 107-122.	3.9	31
24	Over-expression of the photoperiod response regulator ZmCCT10 modifies plant architecture, flowering time and inflorescence morphology in maize. PLoS ONE, 2019, 14, e0203728.	2.5	30
25	The Maize <i>Hairy Sheath Frayed1</i> (<i>Hsf1</i>) Mutation Alters Leaf Patterning through Increased Cytokinin Signaling. Plant Cell, 2020, 32, 1501-1518.	6.6	30
26	A Pectin Methylesterase ZmPme3 Is Expressed in Gametophyte factor1-s (Ga1-s) Silks and Maps to that Locus in Maize (Zea mays L.). Frontiers in Plant Science, 2017, 8, 1926.	3.6	28
27	The Maize Floral Transition. , 2009, , 41-55.		27
28	A maize mutant with decreased capacity to accumulate chloroplast protein synthesis elongation factor (EF-Tu) displays reduced tolerance to heat stress. Plant Science, 2004, 167, 1367-1374.	3.6	24
29	Genetic and molecular analysis of a three-component transposable-element system in maize. Molecular Genetics and Genomics, 1993, 237-237, 105-112.	2.4	16
30	ZMPP2, a novel typeâ€2C protein phosphatase from maize. Journal of Experimental Botany, 2001, 52, 1739-1740.	4.8	4
31	Putting the Function in Maize Genomics. Plant Genome, 2009, 2, .	2.8	1
32	Understanding and Manipulation of the Flowering Network and the Perfection of Seed Quality. , 2010, , 167-198.		1