Hitoyoshi Yasuo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2786123/publications.pdf

Version: 2024-02-01

		331670	302126
37	1,849	21	39
papers	citations	h-index	g-index
42	42	42	0.41
43	43	43	841
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Neuromesodermal Lineage Contribution to CNS Development in Invertebrate and Vertebrate Chordates. Genes, 2021, 12, 592.	2.4	10
2	The alternative oxidase (AOX) increases sulphide tolerance in the highly invasive marine invertebrate <i>Ciona intestinalis</i> . Journal of Experimental Biology, 2021, 224, .	1.7	8
3	Cell geometry, signal dampening, and a bimodal transcriptional response underlie the spatial precision of an ERK-mediated embryonic induction. Developmental Cell, 2021, 56, 2966-2979.e10.	7.0	9
4	A Nodal/Eph signalling relay drives the transition from apical constriction to apico-basal shortening in ascidian endoderm invagination. Development (Cambridge), 2020, 147, .	2.5	9
5	Transcriptional regulation of the Ciona Gsx gene in the neural plate. Developmental Biology, 2019, 448, 88-100.	2.0	5
6	Practical Guide for Ascidian Microinjection: Phallusia mammillata. Advances in Experimental Medicine and Biology, 2018, 1029, 15-24.	1.6	15
7	Patterning of brain precursors in ascidian embryos. Development (Cambridge), 2017, 144, 258-264.	2.5	12
8	ANISEED 2015: a digital framework for the comparative developmental biology of ascidians. Nucleic Acids Research, 2016, 44, D808-D818.	14.5	68
9	Antagonism between \hat{l}^2 -catenin and Gata.a sequentially segregates the germ layers of ascidian embryos. Development (Cambridge), 2016, 143, 4167-4172.	2.5	15
10	Co-expression of Foxa.a, Foxd and Fgf9/16/20 defines a transient mesendoderm regulatory state in ascidian embryos. ELife, 2016, 5 , .	6.0	39
11	Physical association between a novel plasma-membrane structure and centrosome orients cell division. ELife, 2016, 5, .	6.0	16
12	Distinct modes of mitotic spindle orientation align cells in the dorsal midline of ascidian embryos. Developmental Biology, 2015, 408, 66-78.	2.0	16
13	Snail mediates medial–lateral patterning of the ascidian neural plate. Developmental Biology, 2015, 403, 172-179.	2.0	8
14	Ephrin-mediated restriction of ERK1/2 activity delimits the number of pigment cells in the Ciona CNS. Developmental Biology, 2014, 394, 170-180.	2.0	41
15	β-Catenin-Driven Binary Fate Specification Segregates Germ Layers in Ascidian Embryos. Current Biology, 2013, 23, 491-495.	3.9	65
16	Practical tips for imaging ascidian embryos. Development Growth and Differentiation, 2013, 55, 446-453.	1.5	5
17	A dynamic history of gene duplications and losses characterizes the evolution of the SPARC family in eumetazoans. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122963.	2.6	18
18	p120RasGAP mediates ephrin/Eph-dependent attenuation of FGF/ERK signals during cell fate specification in ascidian embryos. Development (Cambridge), 2013, 140, 4347-4352.	2. 5	32

#	Article	IF	CITATIONS
19	Cell lineage and <i>cis</i> àâ€regulation for a unique GABAergic/glycinergic neuron type in the larval nerve cord of the ascidian <i>Ciona intestinalis</i> Development Growth and Differentiation, 2012, 54, 177-186.	1.5	23
20	Divergent mechanisms specify chordate motoneurons: evidence from ascidians. Development (Cambridge), 2011, 138, 1643-1652.	2.5	22
21	Embryological Methods in Ascidians: The Villefranche-sur-Mer Protocols. Methods in Molecular Biology, 2011, 770, 365-400.	0.9	55
22	Similarity and diversity in mechanisms of muscle fate induction between ascidian species. Biology of the Cell, 2008, 100, 265-277.	2.0	37
23	Ephrin-Eph signalling drives the asymmetric division of notochord/neural precursors in Ciona embryos. Development (Cambridge), 2007, 134, 1491-1497.	2.5	95
24	Sequential and combinatorial inputs from Nodal, Delta2/Notch and FGF/MEK/ERK signalling pathways establish a grid-like organisation of distinct cell identities in the ascidian neural plate. Development (Cambridge), 2007, 134, 3527-3537.	2.5	87
25	FGF8/17/18 functions together with FGF9/16/20 during formation of the notochord in Ciona embryos. Developmental Biology, 2007, 302, 92-103.	2.0	68
26	Muscle development in Ciona intestinalis requires the b-HLH myogenic regulatory factor gene Ci-MRF. Developmental Biology, 2007, 302, 333-344.	2.0	54
27	A signalling relay involving Nodal and Delta ligands acts during secondary notochord induction in Ciona embryos. Development (Cambridge), 2006, 133, 2855-2864.	2.5	84
28	Patterning across the ascidian neural plate by lateral Nodal signalling sources. Development (Cambridge), 2005, 132, 1199-1210.	2.5	90
29	A conserved role for the MEK signalling pathway in neural tissue specification and posteriorisation in the invertebrate chordate, the ascidianCiona intestinalis. Development (Cambridge), 2003, 130, 147-159.	2.5	106
30	Brachyury expression in tailless Molgulid ascidian embryos. Evolution & Development, 2002, 4, 205-211.	2.0	17
31	A two-step model for the fate determination of presumptive endodermal blastomeres in Xenopus embryos. Current Biology, 1999, 9, 869-879.	3.9	119
32	Developmental signalling: A careful balancing act. Current Biology, 1998, 8, R228-R231.	3.9	21
33	Conservation of the Developmental Role ofBrachyuryin Notochord Formation in a Urochordate, the AscidianHalocynthia roretzi. Developmental Biology, 1998, 200, 158-170.	2.0	124
34	Autonomy of ascidian fork head/HNF-3 gene expression. Mechanisms of Development, 1997, 69, 143-154.	1.7	57
35	The Ascidian Genome Contains Another T-Domain Gene That Is Expressed in Differentiating Muscle and the Tip of the Tail of the Embryo. Developmental Biology, 1996, 180, 773-779.	2.0	45

An Ascidian Homolog of the Mouse Brachyury (T) Gene is Expressed Exclusively in Notochord Cells at the Fate Restricted Stage. (Ascidians/T (Brachyury) gene/sequence conservation/notochord) Tj ETQq0 0 0 rgBT /Overbock 10 T650 57 Td

#	Article	IF	CITATIONS
37	Function of vertebrate T gene. Nature, 1993, 364, 582-583.	27.8	198