
## Daniel St Johnston

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/278609/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The Drosophila anterior-posterior axis is polarized by asymmetric myosin activation. Current Biology, 2022, 32, 374-385.e4.                                           | 1.8  | 15        |
| 2  | Dissection, Fixation, and Immunostaining of the Drosophila Midgut. Methods in Molecular Biology, 2022, 2438, 309-321.                                                 | 0.4  | 2         |
| 3  | Apical–basal polarity and the control of epithelial form and function. Nature Reviews Molecular Cell<br>Biology, 2022, 23, 559-577.                                   | 16.1 | 94        |
| 4  | RhoGAP19D inhibits Cdc42 laterally to control epithelial cell shape and prevent invasion. Journal of Cell Biology, 2021, 220, .                                       | 2.3  | 10        |
| 5  | MARK4 controls ischaemic heart failure through microtubule detyrosination. Nature, 2021, 594, 560-565.                                                                | 13.7 | 52        |
| 6  | Symmetry breaking in the female germline cyst. Science, 2021, 374, 874-879.                                                                                           | 6.0  | 25        |
| 7  | A single-molecule localization microscopy method for tissues reveals nonrandom nuclear pore distribution in <i>Drosophila</i> . Journal of Cell Science, 2021, 134, . | 1.2  | 10        |
| 8  | <i>Drosophila</i> IMP regulates Kuzbanian to control the timing of Notch signalling in the follicle cells. Development (Cambridge), 2019, 146, .                      | 1.2  | 6         |
| 9  | The role of integrins in <i>Drosophila</i> egg chamber morphogenesis. Development (Cambridge), 2019, 146, .                                                           | 1.2  | 17        |
| 10 | Establishing and transducing cell polarity: common themes and variations. Current Opinion in Cell<br>Biology, 2018, 51, 33-41.                                        | 2.6  | 35        |
| 11 | An alternative mode of epithelial polarity in the Drosophila midgut. PLoS Biology, 2018, 16, e3000041.                                                                | 2.6  | 96        |
| 12 | Spindle orientation: a question of complex positioning. Development (Cambridge), 2017, 144, 1137-1145.                                                                | 1.2  | 84        |
| 13 | aPKC Cycles between Functionally Distinct PAR Protein Assemblies to Drive Cell Polarity.<br>Developmental Cell, 2017, 42, 400-415.e9.                                 | 3.1  | 162       |
| 14 | Localised dynactin protects growing microtubules to deliver oskar mRNA to the posterior cortex of the Drosophila oocyte. ELife, 2017, 6, .                            | 2.8  | 14        |
| 15 | Patronin/Shot Cortical Foci Assemble the Noncentrosomal Microtubule Array that Specifies the Drosophila Anterior-Posterior Axis. Developmental Cell, 2016, 38, 61-72. | 3.1  | 143       |
| 16 | Pins is not required for spindle orientation in the <i>Drosophila</i> wing disc. Development (Cambridge), 2016, 143, 2573-81.                                         | 1.2  | 32        |
| 17 | bicoid mRNA localises to the Drosophila oocyte anterior by random Dynein-mediated transport and anchoring. ELife, 2016, 5, .                                          | 2.8  | 38        |
| 18 | The Renaissance of Developmental Biology. PLoS Biology, 2015, 13, e1002149.                                                                                           | 2.6  | 26        |

| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Lateral adhesion drives reintegration of misplaced cells into epithelial monolayers. Nature Cell<br>Biology, 2015, 17, 1497-1503.                                                                                    | 4.6  | 64        |
| 20 | Cortical microtubule nucleation can organise the cytoskeleton of Drosophila oocytes to define the anteroposterior axis. ELife, 2015, 4, .                                                                            | 2.8  | 47        |
| 21 | Spindle orientation: What if it goes wrong?. Seminars in Cell and Developmental Biology, 2014, 34, 140-145.                                                                                                          | 2.3  | 33        |
| 22 | Slmb antagonises the aPKC/Par-6 complex to control oocyte and epithelial polarity. Development (Cambridge), 2014, 141, 2984-2992.                                                                                    | 1.2  | 19        |
| 23 | Staufen targets coracle mRNA to Drosophila neuromuscular junctions and regulates GluRIIA synaptic accumulation and bouton number. Developmental Biology, 2014, 392, 153-167.                                         | 0.9  | 22        |
| 24 | Analysis of the expression patterns, subcellular localisations and interaction partners of<br><i>Drosophila</i> proteins using a <i>pigP</i> protein trap library. Development (Cambridge), 2014, 141,<br>3994-4005. | 1.2  | 160       |
| 25 | Using mutants, knockdowns, and transgenesis to investigate gene function in <i>Drosophila</i> .<br>Wiley Interdisciplinary Reviews: Developmental Biology, 2013, 2, 587-613.                                         | 5.9  | 36        |
| 26 | Oskar Is Targeted for Degradation by the Sequential Action of Par-1, GSK-3, and the SCF-Slimb Ubiquitin<br>Ligase. Developmental Cell, 2013, 26, 303-314.                                                            | 3.1  | 21        |
| 27 | Discs Large Links Spindle Orientation to Apical-Basal Polarity in Drosophila Epithelia. Current Biology, 2013, 23, 1707-1712.                                                                                        | 1.8  | 106       |
| 28 | Damage to the Drosophila follicle cell epithelium produces "false clones―with apparent polarity<br>phenotypes. Biology Open, 2013, 2, 1313-1320.                                                                     | 0.6  | 31        |
| 29 | Epithelial polarity and spindle orientation: intersecting pathways. Philosophical Transactions of the<br>Royal Society B: Biological Sciences, 2013, 368, 20130291.                                                  | 1.8  | 48        |
| 30 | Dgp71WD is required for the assembly of the acentrosomal Meiosis I spindle, and is not a general targeting factor for the Î <sup>3</sup> -TuRC. Biology Open, 2012, 1, 422-429.                                      | 0.6  | 23        |
| 31 | Growing Microtubules Push the Oocyte Nucleus to Polarize the <i>Drosophila</i> Dorsal-Ventral Axis. Science, 2012, 336, 999-1003.                                                                                    | 6.0  | 133       |
| 32 | Epithelial cell polarity: what flies can teach us about cancer. Essays in Biochemistry, 2012, 53, 129-140.                                                                                                           | 2.1  | 19        |
| 33 | Going with the Flow: An Elegant Model for Symmetry Breaking. Developmental Cell, 2011, 21, 981-982.                                                                                                                  | 3.1  | 4         |
| 34 | A decade of molecular cell biology: achievements and challenges. Nature Reviews Molecular Cell<br>Biology, 2011, 12, 669-674.                                                                                        | 16.1 | 20        |
| 35 | Oogenesis: Matrix Revolutions. Current Biology, 2011, 21, R231-R233.                                                                                                                                                 | 1.8  | 9         |
| 36 | Epithelial polarity and morphogenesis. Current Opinion in Cell Biology, 2011, 23, 540-546.                                                                                                                           | 2.6  | 128       |

3

| #  | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Using the mRNA-MS2/MS2CP-FP System to Study mRNA Transport During Drosophila Oogenesis.<br>Methods in Molecular Biology, 2011, 714, 265-283.                                                               | 0.4  | 15        |
| 38 | In Vivo Analysis of Proteomes and Interactomes Using Parallel Affinity Capture (iPAC) Coupled to Mass Spectrometry. Molecular and Cellular Proteomics, 2011, 10, M110.002386.                              | 2.5  | 69        |
| 39 | Anterior–Posterior Axis Specification in <i>Drosophila</i> Oocytes: Identification of Novel<br><i>bicoid</i> and <i>oskar</i> mRNA Localization Factors. Genetics, 2011, 188, 883-896.                     | 1.2  | 36        |
| 40 | Bazooka is required for polarisation of the <i>Drosophila</i> anterior-posterior axis. Development (Cambridge), 2010, 137, 1765-1773.                                                                      | 1.2  | 70        |
| 41 | aPKC Phosphorylation of Bazooka Defines the Apical/Lateral Border in Drosophila Epithelial Cells.<br>Cell, 2010, 141, 509-523.                                                                             | 13.5 | 261       |
| 42 | Cell Polarity in Eggs and Epithelia: Parallels and Diversity. Cell, 2010, 141, 757-774.                                                                                                                    | 13.5 | 430       |
| 43 | Egalitarian recruitment of localized mRNAs: Figure 1 Genes and Development, 2009, 23, 1475-1480.                                                                                                           | 2.7  | 9         |
| 44 | LKB1 regulates polarity remodeling and adherens junction formation in the <i>Drosophila</i> eye.<br>Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8941-8946. | 3.3  | 62        |
| 45 | The Flannotator—a gene and protein expression annotation tool for <i>Drosophila melanogaster</i> .<br>Bioinformatics, 2009, 25, 548-549.                                                                   | 1.8  | 19        |
| 46 | Drosophila oogenesis. Current Biology, 2008, 18, R1082-R1087.                                                                                                                                              | 1.8  | 226       |
| 47 | In Vivo Imaging of oskar mRNA Transport Reveals the Mechanism of Posterior Localization. Cell, 2008, 134, 843-853.                                                                                         | 13.5 | 315       |
| 48 | Counting Motors by Force. Cell, 2008, 135, 1000-1001.                                                                                                                                                      | 13.5 | 1         |
| 49 | Wherefore <i>DMM</i> ?. DMM Disease Models and Mechanisms, 2008, 1, 6-7.                                                                                                                                   | 1.2  | 6         |
| 50 | LKB1 and AMPK maintain epithelial cell polarity under energetic stress. Journal of Cell Biology, 2007,<br>177, 387-392.                                                                                    | 2.3  | 184       |
| 51 | Drosophila follicle cells are patterned by multiple levels of Notch signaling and antagonism between the Notch and JAK/STAT pathways. Development (Cambridge), 2007, 134, 1161-1169.                       | 1.2  | 112       |
| 52 | Capu and Spire Assemble a Cytoplasmic ActinÂMesh that Maintains Microtubule Organization in the<br>Drosophila Oocyte. Developmental Cell, 2007, 13, 539-553.                                               | 3.1  | 148       |
| 53 | bicoid RNA localization requires specific binding of an endosomal sorting complex. Nature, 2007, 445, 554-558.                                                                                             | 13.7 | 199       |
| 54 | An Oskar-Dependent Positive Feedback Loop Maintains the Polarity of the Drosophila Oocyte. Current<br>Biology, 2007, 17, 353-359.                                                                          | 1.8  | 90        |

| #  | Article                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | From Stem Cell to Embryo without Centrioles. Current Biology, 2007, 17, 1498-1503.                                                                                       | 1.8  | 129       |
| 56 | Miranda couples oskar mRNA/Staufen complexes to the bicoid mRNA localization pathway.<br>Developmental Biology, 2006, 297, 522-533.                                      | 0.9  | 23        |
| 57 | Drosophila Anterior-Posterior Polarity Requires Actin-Dependent PAR-1 Recruitment to the Oocyte Posterior. Current Biology, 2006, 16, 1090-1095.                         | 1.8  | 68        |
| 58 | A novel mutant phenotype implicatesdicephalic in cyst formation in theDrosophila ovary.<br>Developmental Dynamics, 2006, 235, 908-917.                                   | 0.8  | 8         |
| 59 | A translation-independent role of oskar RNA in early Drosophila oogenesis. Development (Cambridge),<br>2006, 133, 2827-2833.                                             | 1.2  | 156       |
| 60 | A repeated IMP-binding motif controls oskar mRNA translation and anchoring independently of<br>Drosophila melanogaster IMP. Journal of Cell Biology, 2006, 172, 577-588. | 2.3  | 65        |
| 61 | Drosophila mus301/spindle-C Encodes a Helicase With an Essential Role in Double-Strand DNA Break<br>Repair and Meiotic Progression. Genetics, 2006, 174, 1273-1285.      | 1.2  | 50        |
| 62 | Moving messages: the intracellular localization of mRNAs. Nature Reviews Molecular Cell Biology, 2005, 6, 363-375.                                                       | 16.1 | 495       |
| 63 | Capicua integrates input from two maternal systems in Drosophila terminal patterning. EMBO Journal, 2004, 23, 4571-4582.                                                 | 3.5  | 27        |
| 64 | An eIF4AIII-containing complex required for mRNA localization and nonsense-mediated mRNA decay.<br>Nature, 2004, 427, 753-757.                                           | 13.7 | 327       |
| 65 | The Origin of Asymmetry: Early Polarisation of the Drosophila Germline Cyst and Oocyte. Current<br>Biology, 2004, 14, R438-R449.                                         | 1.8  | 249       |
| 66 | The Drosophila hnRNPA/B Homolog, Hrp48, Is Specifically Required for a Distinct Step in osk mRNA<br>Localization. Developmental Cell, 2004, 6, 625-635.                  | 3.1  | 97        |
| 67 | Seeing Is Believing. Cell, 2004, 116, 143-152.                                                                                                                           | 13.5 | 164       |
| 68 | A Conserved Oligomerization Domain in Drosophila Bazooka/PAR-3 Is Important for Apical Localization and Epithelial Polarity. Current Biology, 2003, 13, 1330-1334.       | 1.8  | 146       |
| 69 | A role for Drosophila LKB1 in anterior–posterior axis formation and epithelial polarity. Nature, 2003,<br>421, 379-384.                                                  | 13.7 | 283       |
| 70 | Drosophila PAR-1 and 14-3-3 Inhibit Bazooka/PAR-3 to Establish Complementary Cortical Domains in<br>Polarized Cells. Cell, 2003, 115, 691-704.                           | 13.5 | 383       |
| 71 | A Notch/Delta-Dependent Relay Mechanism Establishes Anterior-Posterior Polarity in Drosophila.<br>Developmental Cell, 2003, 5, 547-558.                                  | 3.1  | 96        |
| 72 | The role of PAR-1 in regulating the polarised microtubule cytoskeleton in the Drosophila follicular epithelium. Development (Cambridge), 2003, 130, 3965-3975.           | 1.2  | 143       |

| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | The identification of novel genes required for Drosophilaanteroposterior axis formation in a germline clone screen using GFP-Staufen. Development (Cambridge), 2003, 130, 4201-4215.                                | 1.2  | 60        |
| 74 | Barentsz, a New Component of the Staufen-Containing Ribonucleoprotein Particles in Mammalian<br>Cells, Interacts with Staufen in an RNA-Dependent Manner. Journal of Neuroscience, 2003, 23,<br>5778-5788.          | 1.7  | 88        |
| 75 | Kinesin light chain-independent function of theKinesin heavy chainin cytoplasmic streaming and posterior localisation in theDrosophilaoocyte. Development (Cambridge), 2002, 129, 5473-5485.                        | 1.2  | 177       |
| 76 | Drosophila Nicastrin Is Essential for the Intramembranous Cleavage of Notch. Developmental Cell, 2002, 2, 79-89.                                                                                                    | 3.1  | 124       |
| 77 | Drosophila 14-3-3/PAR-5 Is an Essential Mediator of PAR-1 Function in Axis Formation. Developmental<br>Cell, 2002, 3, 659-671.                                                                                      | 3.1  | 127       |
| 78 | Cell Polarity: Posterior Par-1 Prevents Proteolysis. Current Biology, 2002, 12, R479-R481.                                                                                                                          | 1.8  | 9         |
| 79 | Polar Transport in the Drosophila Oocyte Requires Dynein and Kinesin I Cooperation. Current Biology, 2002, 12, 1971-1981.                                                                                           | 1.8  | 205       |
| 80 | The art and design of genetic screens: Drosophila melanogaster. Nature Reviews Genetics, 2002, 3,<br>176-188.                                                                                                       | 7.7  | 555       |
| 81 | Getting the Message Across: The Intracellular Localization of mRNAs in Higher Eukaryotes. Annual<br>Review of Cell and Developmental Biology, 2001, 17, 569-614.                                                    | 4.0  | 189       |
| 82 | A rapid method to map mutations in Drosophila. Genome Biology, 2001, 2, research0036.1.                                                                                                                             | 13.9 | 36        |
| 83 | Dimerization of the 3′UTR of bicoid mRNA involves a two-step mechanism. Journal of Molecular<br>Biology, 2001, 313, 511-524.                                                                                        | 2.0  | 48        |
| 84 | MEDAL REVIEW: The beginning of the end. EMBO Journal, 2001, 20, 6169-6179.                                                                                                                                          | 3.5  | 8         |
| 85 | Bazooka and PAR-6 are required with PAR-1 for the maintenance of oocyte fate in Drosophila. Current<br>Biology, 2001, 11, 901-906.                                                                                  | 1.8  | 88        |
| 86 | Delta signaling from the germ line controls the proliferation and differentiation of the somatic follicle cells during Drosophila oogenesis. Genes and Development, 2001, 15, 1393-1405.                            | 2.7  | 253       |
| 87 | Barentsz is essential for the posterior localization of oskar mRNA and colocalizes with it to the posterior pole. Journal of Cell Biology, 2001, 154, 511-524.                                                      | 2.3  | 131       |
| 88 | Centrosome migration into the <i>Drosophila</i> oocyte is independent of <i>BicD</i> and <i>egl</i> ,<br>and of the organisation of the microtubule cytoskeleton. Development (Cambridge), 2001, 128,<br>1889-1897. | 1.2  | 86        |
| 89 | PAR-1 is required for the maintenance of oocyte fate in <i>Drosophila</i> . Development (Cambridge), 2001, 128, 1201-1209.                                                                                          | 1.2  | 97        |
| 90 | PAR-1 is required for the maintenance of oocyte fate in Drosophila. Development (Cambridge), 2001, 128, 1201-9.                                                                                                     | 1.2  | 39        |

| #   | Article                                                                                                                                                                               | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Centrosome migration into the Drosophila oocyte is independent of BicD and egl, and of the organisation of the microtubule cytoskeleton. Development (Cambridge), 2001, 128, 1889-97. | 1.2  | 34        |
| 92  | RNA recognition by a Staufen double-stranded RNA-binding domain. EMBO Journal, 2000, 19, 997-1009.                                                                                    | 3.5  | 331       |
| 93  | Distinct roles of two conserved Staufen domains in oskar mRNA localization and translation. EMBO<br>Journal, 2000, 19, 1366-1377.                                                     | 3.5  | 211       |
| 94  | The Drosophila Homolog of C. elegans PAR-1 Organizes the Oocyte Cytoskeleton and Directs oskar mRNA Localization to the Posterior Pole. Cell, 2000, 101, 377-388.                     | 13.5 | 282       |
| 95  | The role of BicD, egl, orb and the microtubules in the restriction of meiosis to the <i>Drosophila</i> oocyte. Development (Cambridge), 2000, 127, 2785-2794.                         | 1.2  | 110       |
| 96  | The role of BicD, Egl, Orb and the microtubules in the restriction of meiosis to the Drosophila oocyte. Development (Cambridge), 2000, 127, 2785-94.                                  | 1.2  | 46        |
| 97  | Pattern formation in single cells. Trends in Genetics, 1999, 15, M60-M64.                                                                                                             | 2.9  | 0         |
| 98  | Pattern formation in single cells. Trends in Cell Biology, 1999, 9, M60-M64.                                                                                                          | 3.6  | 38        |
| 99  | Pattern formation in single cells. Trends in Biochemical Sciences, 1999, 24, M60-M64.                                                                                                 | 3.7  | 3         |
| 100 | The polarisation of the anterior-posterior and dorsal-ventral axes during Drosophila oogenesis.<br>Current Opinion in Genetics and Development, 1999, 9, 396-404.                     | 1.5  | 178       |
| 101 | Cells' Perception of Position in a Concentration Gradient. Cell, 1998, 95, 159-162.                                                                                                   | 13.5 | 97        |
| 102 | Miranda mediates asymmetric protein and RNA localization in the developing nervous system. Genes<br>and Development, 1998, 12, 1847-1857.                                             | 2.7  | 226       |
| 103 | Patterning of the follicle cell epithelium along the anterior-posterior axis during <i>Drosophila</i> oogenesis. Development (Cambridge), 1998, 125, 2837-2846.                       | 1.2  | 161       |
| 104 | The <i>Drosophila</i> AP axis is polarised by the cadherin-mediated positioning of the oocyte.<br>Development (Cambridge), 1998, 125, 3635-3644.                                      | 1.2  | 192       |
| 105 | Patterning of the follicle cell epithelium along the anterior-posterior axis during Drosophila<br>oogenesis. Development (Cambridge), 1998, 125, 2837-46.                             | 1.2  | 50        |
| 106 | The Drosophila AP axis is polarised by the cadherin-mediated positioning of the oocyte. Development<br>(Cambridge), 1998, 125, 3635-44.                                               | 1.2  | 59        |
| 107 | The mago nashi gene is required for the polarisation of the oocyte and the formation of perpendicular axes in Drosophila. Current Biology, 1997, 7, 468-478.                          | 1.8  | 185       |
| 108 | Oocyte determination and the origin of polarity in <i>Drosophila:</i> the role of the <i>spindle</i> genes. Development (Cambridge), 1997, 124, 4927-4937.                            | 1.2  | 136       |

| #   | Article                                                                                                                                                                                  | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Oocyte determination and the origin of polarity in Drosophila: the role of the spindle genes.<br>Development (Cambridge), 1997, 124, 4927-37.                                            | 1.2  | 54        |
| 110 | RNA localization and the development of asymmetry during Drosophila oogenesis. Current Opinion in Genetics and Development, 1996, 6, 395-402.                                            | 1.5  | 69        |
| 111 | Polarization of both major body axes in Drosophila by gurken-torpedo signalling. Nature, 1995, 375,<br>654-658.                                                                          | 13.7 | 475       |
| 112 | New role for tropomyosin. Nature, 1995, 377, 483-483.                                                                                                                                    | 13.7 | 3         |
| 113 | NMR solution structure of a dsRNA binding domain from Drosophila staufen protein reveals<br>homology to the N-terminal domain of ribosomal protein S5 EMBO Journal, 1995, 14, 3563-3571. | 3.5  | 235       |
| 114 | The intracellular localization of messenger RNAs. Cell, 1995, 81, 161-170.                                                                                                               | 13.5 | 557       |
| 115 | NMR solution structure of a dsRNA binding domain from Drosophila staufen protein reveals homology to the N-terminal domain of ribosomal protein S5. EMBO Journal, 1995, 14, 3563-71.     | 3.5  | 103       |
| 116 | Role of oocyte position in establishment of anterior-posterior polarity in Drosophila. Science, 1994, 266, 639-642.                                                                      | 6.0  | 113       |
| 117 | RNA Localization: Getting to the Top. Current Biology, 1994, 4, 54-56.                                                                                                                   | 1.8  | 6         |
| 118 | Staufen protein associates with the $3\hat{a} \in ^2$ UTR of bicoid mRNA to form particles that move in a microtubule-dependent manner. Cell, 1994, 79, 1221-1232.                       | 13.5 | 412       |
| 119 | A conserved double-stranded RNA-binding domain Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 10979-10983.                                   | 3.3  | 539       |
| 120 | The origin of pattern and polarity in the Drosophila embryo. Cell, 1992, 68, 201-219.                                                                                                    | 13.5 | 1,344     |
| 121 | staufen, a gene required to localize maternal RNAs in the Drosophila egg. Cell, 1991, 66, 51-63.                                                                                         | 13.5 | 596       |
| 122 | Multiple steps in the localization of <i>bicoid</i> RNA to the anterior pole of the <i>Drosophila</i> oocyte. Development (Cambridge), 1989, 107, 13-19.                                 | 1.2  | 222       |
| 123 | Multiple steps in the localization of bicoid RNA to the anterior pole of the Drosophila oocyte.<br>Development (Cambridge), 1989, 107 Suppl, 13-9.                                       | 1.2  | 99        |
| 124 | Epithelial Cell Polarity During Drosophila Midgut Development. Frontiers in Cell and Developmental<br>Biology, 0, 10, .                                                                  | 1.8  | 2         |