Jordi Poater

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2784719/publications.pdf

Version: 2024-02-01

156 papers	8,287 citations	47006 47 h-index	86 g-index
165	165	165	5324
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Theoretical Evaluation of Electron Delocalization in Aromatic Molecules by Means of Atoms in Molecules (AIM) and Electron Localization Function (ELF) Topological Approaches. Chemical Reviews, 2005, 105, 3911-3947.	47.7	661
2	The Delocalization Index as an Electronic Aromaticity Criterion: Application to a Series of Planar Polycyclic Aromatic Hydrocarbons. Chemistry - A European Journal, 2003, 9, 400-406.	3.3	396
3	Quantifying aromaticity with electron delocalisation measures. Chemical Society Reviews, 2015, 44, 6434-6451.	38.1	335
4	Hydrogen–Hydrogen Bonding in Planar Biphenyl, Predicted by Atoms-In-Molecules Theory, Does Not Exist. Chemistry - A European Journal, 2006, 12, 2889-2895.	3.3	314
5	On the performance of some aromaticity indices: A critical assessment using a test set. Journal of Computational Chemistry, 2008, 29, 1543-1554.	3.3	261
6	Ï€â€Aromaticity and Threeâ€Dimensional Aromaticity: Two sides of the Same Coin?. Angewandte Chemie - International Edition, 2014, 53, 12191-12195.	13.8	242
7	A Model of the Chemical Bond Must Be Rooted in Quantum Mechanics, Provide Insight, and Possess Predictive Power. Chemistry - A European Journal, 2006, 12, 2902-2905.	3.3	216
8	Polycyclic Benzenoids:Â Why Kinked is More Stable than Straight. Journal of Organic Chemistry, 2007, 72, 1134-1142.	3.2	197
9	Local Aromaticity of [n]Acenes, [n]Phenacenes, and [n]Helicenes (n = 1â^9). Journal of Organic Chemistry, 2005, 70, 2509-2521.	3.2	195
10	The calculation of electron localization and delocalization indices at the Hartree-Fock, density functional and post-Hartree-Fock levels of theory. Theoretical Chemistry Accounts, 2002, 107, 362-371.	1.4	187
11	Relation between the Substituent Effect and Aromaticity. Journal of Organic Chemistry, 2004, 69, 6634-6640.	3.2	177
12	Electron-pairing analysis from localization and delocalization indices in the framework of the atoms-in-molecules theory. Theoretical Chemistry Accounts, 2002, 108, 214-224.	1.4	175
13	Comparison of the AIM Delocalization Index and the Mayer and Fuzzy Atom Bond Orders. Journal of Physical Chemistry A, 2005, 109, 9904-9910.	2.5	169
14	Assessment of Clar's aromatic π-sextet rule by means of PDI, NICS and HOMA indicators of local aromaticity. Journal of Physical Organic Chemistry, 2005, 18, 785-791.	1.9	147
15	Too Persistent to Give Up: Aromaticity in Boron Clusters Survives Radical Structural Changes. Journal of the American Chemical Society, 2020, 142, 9396-9407.	13.7	145
16	An Insight into the Local Aromaticities of Polycyclic Aromatic Hydrocarbons and Fullerenes. Chemistry - A European Journal, 2003, 9, 1113-1122.	3.3	125
17	Adenine versus guanine quartets in aqueous solution: dispersion-corrected DFT study on the differences in π-stacking and hydrogen-bonding behavior. Theoretical Chemistry Accounts, 2010, 125, 245-252.	1.4	123
18	A Critical Assessment of the Performance of Magnetic and Electronic Indices of Aromaticity. Symmetry, 2010, 2, 1156-1179.	2.2	115

#	Article	IF	Citations
19	Local Aromaticity of the Six-Membered Rings in Pyracylene. A Difficult Case for the NICS Indicator of Aromaticity. Journal of Organic Chemistry, 2004, 69, 7537-7542.	3.2	113
20	<i>>para</i> -Selective C–H Olefination of Aniline Derivatives via Pd/S,O-Ligand Catalysis. Journal of the American Chemical Society, 2019, 141, 6719-6725.	13.7	108
21	Discrepancy between common local aromaticity measures in a series of carbazole derivatives. Physical Chemistry Chemical Physics, 2004, 6, 314-318.	2.8	106
22	Metalloaromaticity. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2013, 3, 105-122.	14.6	105
23	Hückel's Rule of Aromaticity Categorizes Aromatic <i>closo</i> Boron Hydride Clusters. Chemistry - A European Journal, 2016, 22, 7437-7443.	3.3	103
24	Aromaticity of Distorted Benzene Rings:  Exploring the Validity of Different Indicators of Aromaticity. Journal of Physical Chemistry A, 2007, 111, 4513-4521.	2.5	102
25	Ground and Low-Lying States of Cu2+â^'H2O. A Difficult Case for Density Functional Methods. Journal of Physical Chemistry A, 2004, 108, 6072-6078.	2.5	85
26	A Test to Evaluate the Performance of Aromaticity Descriptors in All-Metal and Semimetal Clusters. An Appraisal of Electronic and Magnetic Indicators of Aromaticity. Journal of Chemical Theory and Computation, 2010, 6, 1118-1130.	5.3	84
27	Modeling the structureâ€property relationships of nanoneedles: A journey toward nanomedicine. Journal of Computational Chemistry, 2009, 30, 275-284.	3.3	76
28	On the electron-pair nature of the hydrogen bond in the framework of the atoms in molecules theory. Chemical Physics Letters, 2003, 369, 248-255.	2.6	74
29	New Solids Based on B ₁₂ N ₁₂ Fullerenes. Journal of Physical Chemistry C, 2007, 111, 13354-13360.	3.1	72
30	Chemical basis for the recognition of trimethyllysine by epigenetic reader proteins. Nature Communications, 2015, 6, 8911.	12.8	72
31	A trinuclear Pt(ii) compound with short Pt–Pt–Pt contacts. An analysis of the influence of π–π stacking interactions on the strength and length of the Pt–Pt bond. Dalton Transactions, 2006, , 1188-1196.	3.3	70
32	Local Aromaticity of the Lowest-Lying Singlet States of $[n]$ Acenes $(n = 6\hat{a}^3)$. Journal of Physical Chemistry A, 2005, 109, 10629-10632.	2.5	68
33	Double CH Activation of a Masked Cationic Bismuth Amide. Angewandte Chemie - International Edition, 2018, 57, 3825-3829.	13.8	66
34	B-DNA structure and stability: the role of hydrogen bonding, π–π stacking interactions, twist-angle, and solvation. Organic and Biomolecular Chemistry, 2014, 12, 4691-4700.	2.8	64
35	An analysis of the changes in aromaticity and planarity along the reaction path of the simplest Dielsâ ϵ "Alder reaction. Exploring the validity of different indicators of aromaticity. Computational and Theoretical Chemistry, 2005, 727, 165-171.	1.5	59
36	Carbon monoxide insertion at a heavy p-block element: unprecedented formation of a cationic bismuth carbamoyl. Chemical Science, 2019, 10, 4169-4176.	7.4	59

#	Article	IF	CITATIONS
37	Role of Electron Density and Magnetic Couplings on the Nucleus-Independent Chemical Shift (NICS) Profiles of [2.2]Paracyclophane and Related Species. Journal of Organic Chemistry, 2006, 71, 1700-1702.	3.2	57
38	Aromaticity and electronic delocalization in all-metal clusters with single, double, and triple aromatic character. Theoretical Chemistry Accounts, 2011, 128, 419-431.	1.4	57
39	PyFrag 2019—Automating the exploration and analysis of reaction mechanisms. Journal of Computational Chemistry, 2019, 40, 2227-2233.	3.3	57
40	Covalent and Ionic Capacity of MOFs To Sorb Small Gas Molecules. Inorganic Chemistry, 2018, 57, 6981-6990.	4.0	55
41	Local Aromaticity in Natural Nucleobases and Their Size-Expanded Benzo-Fused Derivatives. Journal of Physical Chemistry A, 2006, 110, 12249-12258.	2.5	52
42	Selectivity in DNA replication. Interplay of steric shape, hydrogen bonds, π-stacking and solvent effects. Chemical Communications, 2011, 47, 7326.	4.1	52
43	Analysis of the effect of changing the a0 parameter of the Becke3-LYP hybrid functional on the transition state geometries and energy barriers in a series of prototypical reactions. Physical Chemistry Chemical Physics, 2002, 4, 722-731.	2.8	51
44	Open-shell spherical aromaticity: the 2N2 + 2N + 1 (with S = N + $\hat{A}^{1/2}$) rule. Chemical Communications, 2011, 47, 11647.	4.1	49
45	Reactivity of the Donorâ€Stabilized Silylenes [<i>i</i> PrNC(Ph)N <i>i</i> Pr] ₂ Si and [<i>i</i> PrNC(N <i>i</i> Pr ₂)N <i>i</i> Pr] ₂ Si: Activation of CO ₂ and CS ₂ . Chemistry - A European Journal, 2015, 21, 16665-16672.	3.3	49
46	Nuclear magnetic resonance chemical shifts with the statistical average of orbital-dependent model potentials in Kohn–Sham density functional theory. Journal of Chemical Physics, 2003, 118, 8584-8593.	3.0	48
47	Aromaticity Analysis of Lithium Cation/ π Complexes of Aromatic Systems. ChemPhysChem, 2005, 6, 2552-2561.	2.1	46
48	Analysis of the Effects of N-Substituents on Some Aspects of the Aromaticity of Imidazoles and Pyrazoles. Journal of Physical Chemistry A, 2011, 115, 8571-8577.	2.5	46
49	The Missing Entry in the Agostic–Anagostic Series: Rh(I)–Î- ¹ -C Interactions in P(CH)P Pincer Complexes. Inorganic Chemistry, 2015, 54, 2960-2969.	4.0	46
50	Electron Fluctuation in Pericyclic and Pseudopericyclic Reactions. ChemPhysChem, 2006, 7, 111-113.	2.1	45
51	An Analysis of the Isomerization Energies of 1,2-/1,3-Diazacyclobutadiene, Pyrazole/Imidazole, and Pyridazine/Pyrimidine with the Turn-Upside-Down Approach. Journal of Organic Chemistry, 2011, 76, 8913-8921.	3.2	43
52	Aromaticity Determines the Relative Stability of Kinked vs. Straight Topologies in Polycyclic Aromatic Hydrocarbons. Frontiers in Chemistry, 2018, 6, 561.	3.6	41
53	A Simple Link between Hydrocarbon and Borohydride Chemistries. Chemistry - A European Journal, 2013, 19, 4169-4175.	3.3	40
54	Bonding in Methylalkalimetals (CH3M)n(M = Li, Na, K;n= 1, 4). Agreement and Divergences between AIM and ELF Analysesâ€. Journal of Physical Chemistry B, 2006, 110, 7189-7198.	2.6	39

#	Article	IF	CITATIONS
55	Didehydrophenanthrenes:  Structure, Singlet⠒Triplet Splitting, and Aromaticity. Journal of Physical Chemistry A, 2007, 111, 5063-5070.	2.5	39
56	Analysis of Hýckel's [4 <i>n</i> + 2] Rule through Electronic Delocalization Measures. Journal of Physical Chemistry A, 2008, 112, 13231-13238.	2.5	38
57	Patterns of π-electron delocalization in aromatic and antiaromatic organic compounds in the light of Hýckel's 4n + 2 rule. Physical Chemistry Chemical Physics, 2010, 12, 7126.	2.8	38
58	Examining the Planarity of Poly(3,4-ethylenedioxythiophene): Consideration of Self-Rigidification, Electronic, and Geometric Effects. Journal of Physical Chemistry A, 2010, 114, 1023-1028.	2.5	38
59	Hypervalent versus Nonhypervalent Carbon in Nobleâ€Gas Complexes. Chemistry - A European Journal, 2008, 14, 6901-6911.	3.3	37
60	Analysis of the Relative Stabilities of Ortho, Meta, and Para MCIY(XC ₄ H ₄)(PH ₃) ₂ Heterometallabenzenes (M = Rh,) Tj ETG	Q a_l3 00rg	g B T6/Overloc
61	Bismuth Amides Mediate Facile and Highly Selective Pn–Pn Radical oupling Reactions (Pn=N, P, As). Angewandte Chemie - International Edition, 2021, 60, 6441-6445.	13.8	36
62	New Insights in Chemical Reactivity by Means of Electron Pairing Analysis. Journal of Physical Chemistry A, 2001, 105, 2052-2063.	2.5	34
63	Are nucleus-independent (NICS) and 1H NMR chemical shifts good indicators of aromaticity in π-stacked polyfluorenes?. Chemical Physics Letters, 2006, 428, 191-195.	2.6	33
64	Effects of Solvation on the Pairing of Electrons in a Series of Simple Molecules and in the Menshutkin Reaction. Journal of Physical Chemistry A, 2001, 105, 6249-6257.	2.5	32
65	Hydrogen bonding and aromaticity in the guanine–cytosine base pair interacting with metal cations (M = Cu+, Ca2+and Cu2+). Molecular Physics, 2005, 103, 163-173.	1.7	32
66	Solvent effects on hydrogen bonds in Watson–Crick, mismatched, and modified DNA base pairs. Computational and Theoretical Chemistry, 2012, 998, 57-63.	2.5	32
67	The <i>nido</i> â€Cageâ<â<ï€ Bond: A Nonâ€covalent Interaction between Boron Clusters and Aromatic Rin and Its Applications. Angewandte Chemie - International Edition, 2020, 59, 9018-9025.	ngs 13.8	32
68	Analysis of the Aromaticity of Five-Membered Heterometallacycles Containing Os, Ru, Rh, and Ir. Organometallics, 2014, 33, 1762-1773.	2.3	31
69	Understanding Conjugation and Hyperconjugation from Electronic Delocalization Measures. Journal of Physical Chemistry A, 2011, 115, 13104-13113.	2.5	30
70	Stable Fourâ€Coordinate Guanidinatosilicon(IV) Complexes with SiN 3 El Skeletons (El=S, Se, Te) and SiEl Double Bonds. Chemistry - A European Journal, 2015, 21, 14011-14021.	3.3	29
71	Analysis of Electron Delocalization in Aromatic Systems:  Individual Molecular Orbital Contributions to Para-Delocalization Indexes (PDI). Journal of Physical Chemistry A, 2006, 110, 11569-11574.	2.5	28
72	Path-dependency of energy decomposition analysis & Department of Lambda Physical Chemistry Chemical Physics, 2022, 24, 2344-2348.	2.8	27

#	Article	IF	Citations
73	Rational design of nearâ€infrared absorbing organic dyes: Controlling the HOMO–LUMO gap using quantitative molecular orbital theory. Journal of Computational Chemistry, 2018, 39, 2690-2696.	3.3	26
74	The Chemical Bond: When Atom Size Instead of Electronegativity Difference Determines Trend in Bond Strength. Chemistry - A European Journal, 2021, 27, 15616-15622.	3.3	26
75	B-DNA model systems in non-terran bio-solvents: implications for structure, stability and replication. Physical Chemistry Chemical Physics, 2017, 19, 16969-16978.	2.8	25
76	Doppelte CHâ€Aktivierung eines maskierten Bismutamidâ€Kations. Angewandte Chemie, 2018, 130, 3887-3891.	2.0	25
77	Exploring the validity of the Glidewell–Lloyd extension of Clar's π-sextet rule: assessment from polycyclic conjugated hydrocarbons. Theoretical Chemistry Accounts, 2016, 135, 1.	1.4	24
78	Analysis of electronic delocalization in buckminsterfullerene (C60). International Journal of Quantum Chemistry, 2004, 98, 361-366.	2.0	23
79	Reaction Mechanism and Regioselectivity of the Bingel–Hirsch Addition of Dimethyl Bromomalonate to La@ <i>C</i> _{2<i>v</i>} â€C ₈₂ . Chemistry - A European Journal, 2016, 22, 5953-5962.	3.3	23
80	3D and 2D aromatic units behave like oil and water in the case of benzocarborane derivatives. Nature Communications, 2022, 13 , .	12.8	23
81	Diastereoselective Synthesis of Fulleropyrrolidines from Suitably Functionalized Chiral Cyclobutanes. Journal of Organic Chemistry, 2005, 70, 6929-6932.	3.2	22
82	Parametrization of the Becke3-LYP hybrid functional for a series of small molecules using quantum molecular similarity techniques. Journal of Computational Chemistry, 2001, 22, 1666-1678.	3.3	21
83	On the electronic structure of second generation Hoveyda–Grubbs alkene metathesis precursors. Computational and Theoretical Chemistry, 2012, 996, 57-67.	2.5	21
84	Ab Initio Design of Chelating Ligands Relevant to Alzheimer's Disease: Influence of Metalloaromaticity. Journal of Physical Chemistry A, 2011, 115, 12659-12666.	2.5	20
85	Electron pairing analysis of the Fischer-type chromium–carbene complexes (CO)5Crî~C(X)R (X=H, OH,) Tj ETQo	9 <mark>1.</mark> 1 0.784	1314 rgBT
86	Aromaticity changes along the reaction coordinate connecting the cyclobutadiene dimer to cubane and the benzene dimer to hexaprismane. Structural Chemistry, 2007, 18, 773-783.	2.0	18
87	Molecular structures of M2N22 \hat{a} (M and N = B, Al, and Ga) clusters using the gradient embedded genetic algorithm. Physical Chemistry Chemical Physics, 2012, 14, 14850.	2.8	18
88	Stabilization of 2,6-Diarylanilinum Cation by Through-Space Cationâ⁻Ï€ Interactions. Journal of Organic Chemistry, 2017, 82, 9418-9424.	3.2	18
89	Comment on the "Nature of Bonding in the Thermal Cyclization of (Z)-1,2,4,6-Heptatetraene and Its Heterosubstituted Analogues― Journal of Physical Chemistry B, 2005, 109, 7591-7593.	2.6	17
90	Fmocâ€"RGDS based fibrils: atomistic details of their hierarchical assembly. Physical Chemistry Chemical Physics, 2016, 18, 1265-1278.	2.8	17

#	Article	IF	CITATIONS
91	Kekulene: Structure, stability and nature of H•••H interactions in large PAHs. Molecular Astrophysics, 2017, 8, 19-26.	1.6	17
92	Theoretical studies on aromaticity of selected hydroxypyrones. Part 3#. Chelatoaromaticity phenomenon in metalcomplexes of hydroxypyrones. Journal of Physical Organic Chemistry, 2011, 24, 499-506.	1.9	16
93	X < sub > 2 < / sub > Y < sub > 2 < / sub > Isomers: Tuning Structure and Relative Stability through Electronegativity Differences (X = H, Li, Na, F, Cl, Br, I; Y = O, S, Se, Te). Inorganic Chemistry, 2013, 52, 2458-2465.	4.0	16
94	Why 1,2-quinone derivatives are more stable than their 2,3-analogues?. Theoretical Chemistry Accounts, 2015, 134, 1.	1.4	16
95	Alkali Metal Complexes of Silyl-Substitutedansa-(Tris)allyl Ligands: Metal-, Co-Ligand- and Substituent-Dependent Stereochemistry. European Journal of Inorganic Chemistry, 2009, 2009, 4157-4167.	2.0	15
96	Routes of π-Electron Delocalization in 4-Substituted-1,2-benzoquinones. Journal of Organic Chemistry, 2011, 76, 550-556.	3.2	15
97	Recognition of shorter and longer trimethyllysine analogues by epigenetic reader proteins. Chemical Communications, 2018, 54, 2409-2412.	4.1	15
98	Open-shell jellium aromaticity in metal clusters. Chemical Communications, 2019, 55, 5559-5562.	4.1	15
99	A donor-functionalized, silyl-substituted pentadienyllithium: structural insight from experiment and theory. Chemical Communications, 2011, 47, 6162.	4.1	14
100	All-metal aromatic clusters M42â^' (M = B, Al, and Ga). Are Ï€-electrons distortive or not?. Physical Chemistry Chemical Physics, 2011, 13, 20673.	2.8	14
101	Formation of a Trifluorophosphane Platinum(II) Complex by Pâ^F Bond Activation of Phosphorus Pentafluoride with a Pt ⁰ Complex. Chemistry - A European Journal, 2017, 23, 5948-5952.	3.3	14
102	Binding of 6-mer single-stranded homo-nucleotides to poly(3,4-ethylenedioxythiophene): specific hydrogen bonds with guanine. Soft Matter, 2011, 7, 9922.	2.7	13
103	Unraveling the Origin of the Relative Stabilities of Group 14 M ₂ N ₂ ²⁺ (M, N = C, Si, Ge, Sn, and Pb) Isomer Clusters. Journal of Physical Chemistry A, 2013, 117, 10462-10469.	2.5	13
104	Mechanism of biomolecular recognition of trimethyllysine by the fluorinated aromatic cage of KDM5A PHD3 finger. Communications Chemistry, 2020, 3, .	4. 5	13
105	Octahedral aromaticity in $\langle sup \rangle 2S+1 \langle sup \rangle A \langle sub \rangle 1g \langle sub \rangle X \langle sub \rangle 6 \langle sub \rangle \langle sup \rangle q \langle sup \rangle clusters (X =) Tj ET (X = 1) Tj ET$	[Qq]_] 0.7	7843]4 rgBT /
106	Understanding the differences between iron and palladium in cross-coupling reactions. Physical Chemistry Chemical Physics, 2019, 21, 9651-9664.	2.8	12
107	Distortionâ€Controlled Redshift of Organic Dye Molecules. Chemistry - A European Journal, 2020, 26, 2080-2093.	3.3	12
108	Analysis of the electronic delocalization in some isoelectronic analogues of B ₁₂ doped with beryllium and/or carbon. Physical Chemistry Chemical Physics, 2020, 22, 12245-12259.	2.8	12

#	Article	IF	CITATIONS
109	Aromaticity and Extrusion of Benzenoids Linked to [⟨i⟩o⟨ i⟩ OSAN]⟨sup⟩â^'⟨ sup⟩: Clar Has the Answer. Angewandte Chemie - International Edition, 2022, 61, .	13.8	12
110	Nature of the Ruâ^'NO Coordination Bond: Kohnâ€"Sham Molecular Orbital and Energy Decomposition Analysis. ChemistryOpen, 2017, 6, 410-416.	1.9	11
111	Probing Through-Space PolarâʾÏ€ Interactions in 2,6-Diarylphenols. Journal of Organic Chemistry, 2019, 84, 3632-3637.	3.2	11
112	Probing Halogenâ^Ï€ versus CHâ^Ï€ Interactions in Molecular Balance. Organic Letters, 2020, 22, 7870-7873.	4.6	11
113	Câ^'X Bond Activation by Palladium: Steric Shielding versus Steric Attraction. Chemistry - A European Journal, 2022, 28, .	3.3	11
114	Complexes of adamantaneâ€based group 13 Lewis acids and superacids: Bonding analysis and thermodynamics of hydrogen splitting. Journal of Computational Chemistry, 2016, 37, 1355-1362.	3.3	10
115	Ab initio and DFT modeling of stereoselective deamination of aziridines by nitrosyl chloride. International Journal of Quantum Chemistry, 2005, 102, 139-146.	2.0	9
116	Excess charge delocalization in organic and biological molecules: some theoretical notions. Theoretical Chemistry Accounts, 2009, 123, 29-40.	1.4	9
117	Comparison between Alkalimetal and Group 11 Transition Metal Halide and Hydride Tetramers: Molecular Structure and Bonding. Journal of Physical Chemistry A, 2013, 117, 8026-8034.	2.5	9
118	Aromaticity and Magnetic Properties of 1―and 2―Indenones and Their Aza Derivatives. European Journal of Organic Chemistry, 2014, 2014, 5370-5377.	2.4	9
119	Testing the effectiveness of the isoelectronic substitution principle through the transformation of aromatic osmathiophene derivatives into their inorganic analogues. New Journal of Chemistry, 2017, 41, 1168-1178.	2.8	9
120	Throughâ€6pace Polarâ€ï€ Interactions in 2,6â€Diarylthiophenols. ChemPhysChem, 2020, 21, 1092-1100.	2.1	9
121	Properties of poly(3-halidethiophene)s. Physical Chemistry Chemical Physics, 2012, 14, 10050.	2.8	8
122	Aromatic properties of 8-hydroxyquinoline and its metal complexes. Open Chemistry, 2013, 11, 655-663.	1.9	8
123	Comparison of Molecular Recognition of Trimethyllysine and Trimethylthialysine by Epigenetic Reader Proteins. Molecules, 2020, 25, 1918.	3.8	8
124	The energy components of the extended transition state energy decomposition analysis are path functions: the case of water tetramer. Theoretical Chemistry Accounts, 2021, 140, 1.	1.4	8
125	Probing the Lewis Acidity of Boronic Acids through Interactions with Arene Substituents. Chemistry - A European Journal, 2022, 28, .	3.3	8
126	Examining the formation of specific interactions between poly(3,4-ethylenedioxythiophene) and nucleotide bases. RSC Advances, 2013, 3, 2639.	3.6	7

#	Article	IF	CITATIONS
127	Rules of Aromaticity. Challenges and Advances in Computational Chemistry and Physics, 2016, , 321-335.	0.6	7
128	Planar <i>vs. </i> three-dimensional X ₆ ^{2â^'} , X ₂ Y ₄ <2â^' and X ₃ Y ₃ ^{2â^'} (X, Y = B,) Physical Chemistry Chemical Physics, 2016, 18, 21102-21110.	ŢįĘŢQq0(0,0 rgBT /Ov
129	Silyleneâ€Induced Reduction of [Mn ₂ (CO) ₁₀]: Formation of a Fiveâ€Coordinate Silicon(IV) Complex with an Oâ€Bound [(OC) ₄ Mn=Mn(CO) ₄] _{2â€"Ligand. European Journal of Inorganic Chemistry, 2017, 2017, 186-191.}	2.0	7
130	Phenoxylation of Alkynes through Mono―and Dual Activation Using Group 11 (Cu, Ag, Au) Catalysts. European Journal of Inorganic Chemistry, 2020, 2020, 1123-1134.	2.0	7
131	The nido â€Cageâ‹â‹ã‹ï€ Bond: A Nonâ€covalent Interaction between Boron Clusters and Aromatic Rings and Applications. Angewandte Chemie, 2020, 132, 9103-9110.	d Its 2.0	7
132	Bismutamide als einfache Vermittler hochselektiver Pnâ^'Pnâ€Radikalâ€Kupplungsreaktionen (Pn=N, P, As). Angewandte Chemie, 2021, 133, 6513-6518.	2.0	7
133	Do Sulfonamides Interact with Aromatic Rings?. Chemistry - A European Journal, 2021, 27, 5721-5729.	3.3	7
134	C(<i>>sp</i> ⁿ)â^'X (n=1â€"3) Bond Activation by Palladium. Chemistry - A European Journal, 2022, 28, .	3.3	7
135	Rational design of iron catalysts for C – X bond activation. Journal of Computational Chemistry, 2022, , .	3.3	7
136	Aromaticity Analysis by Means of the Quantum Theory of Atoms in Molecules. , 0, , 399-423.		6
137	Electroactive polymers for the detection of morphine. Journal of Polymer Research, 2014, 21, 1.	2.4	6
138	How carbo-benzenes fit molecules in their inner core as do biologic ion carriers?. Structural Chemistry, 2016, 27, 249-259.	2.0	6
139	Chelation enforcing a dual gold configuration in the catalytic hydroxyphenoxylation of alkynes. Applied Organometallic Chemistry, 2021, 35, e6362.	3.5	5
140	Cage [–] ···Cage [–] Interaction: Boron Cluster-Based Noncovalent Bond and Its Applications in Solid-State Materials. Jacs Au, 2021, 1, 2047-2057.	7.9	5
141	Aromaticity and Chemical Reactivity. , 2009, , .		5
142	Zwitterionic Aromaticity on Azulene Extrapolated to <i>carbo</i> â€Azulene. European Journal of Organic Chemistry, 2021, 2021, 6450-6458.	2.4	5
143	Reading and erasing of the phosphonium analogue of trimethyllysine by epigenetic proteins. Communications Chemistry, 2022, 5, .	4.5	5
144	Activation Strain Analyses of Counterion and Solvent Effects on the Ionâ€Pair S N 2 Reaction of and CH 3 Cl. Journal of Computational Chemistry, 2020, 41, 317-327.	3.3	4

#	Article	IF	CITATIONS
145	Pyrrole and Pyridine in the Water Environment—Effect of Discrete and Continuum Solvation Models. ACS Omega, 2021, 6, 24693-24699.	3.5	4
146	Synthesis and Hydrolysis of Alkoxy(aminoalkyl)diorganylsilanes of the Formula Type $R2(RO)Si(CH2)nNH2(R=Alkyl,n=1-3)$: A Systematic Experimental and Computational Study. European Journal of Inorganic Chemistry, 2016, 2016, 1641-1659.	2.0	3
147	Aromaticity and Extrusion of Benzenoids Linked to [<i>>o</i> OSAN] ^{â^'} : Clar Has the Answer. Angewandte Chemie, 0, , .	2.0	3
148	Cyclopropenylidenephosphoranes: Rearrangement to Azetidinylidene-Methylphosphoniums. Journal of Organic Chemistry, 2020, 85, 7452-7458.	3.2	2
149	Probing Noncovalent Interactions in [3,3]Metaparacyclophanes. Journal of Organic Chemistry, 2022, 87, 6087-6096.	3.2	2
150	Through-Space Stabilization of an Imidazolium Cation by Aromatic Rings. Journal of Organic Chemistry, 2022, 87, 7875-7883.	3.2	2
151	An Insight into the Local Aromaticities of Polycyclic Aromatic Hydrocarbons and Fullerenes ChemInform, 2003, 34, no.	0.0	0
152	Discrepancy Between Common Local Aromaticity Measures in a Series of Carbazole Derivatives. ChemInform, 2004, 35, no.	0.0	0
153	Theoretical Evaluation of Electron Delocalization in Aromatic Molecules by Means of Atoms in Molecules (AIM) and Electron Localization Functional (ELF) Topological Approaches. ChemInform, 2006, 37, no.	0.0	0
154	Chapter 10 Electronic structure and reactivity of aromatic metal clusters. Theoretical and Computational Chemistry, 2007, 19, 203-218.	0.4	0
155	Throughâ€Space Polarâ€Ï€ Interactions in 2,6â€Diarylthiophenols. ChemPhysChem, 2020, 21, 1080-1080.	2.1	0
156	52 GAMES WITH THE PERIODIC TABLE AND BEYOND., 2019,,.		0