Lingnan Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2784369/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A general model for flow boiling heat transfer in microfin tubes based on a new neural network architecture. Energy and AI, 2022, 8, 100151.	10.6	9
2	Density and viscosity of a polyol ester lubricant: Measurement and molecular dynamics simulation. International Journal of Refrigeration, 2020, 118, 188-201.	3.4	38
3	Oral pH sensitive GNS@ab nanoprobes for targeted therapy of Helicobacter pylori without disturbance gut microbiome. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 20, 102019.	3.3	36
4	Resuspension of deposited nanoparticles during pool boiling. International Journal of Heat and Mass Transfer, 2019, 130, 230-239.	4.8	19
5	Review of low-GWP refrigerant pool boiling heat transfer on enhanced surfaces. International Journal of Heat and Mass Transfer, 2019, 131, 1279-1303.	4.8	42
6	Model for predicting particle size evolution during nanoparticle aggregation in refrigerant–oil mixture. International Journal of Heat and Mass Transfer, 2018, 119, 91-104.	4.8	10
7	Specific heat of aluminum-oxide nanolubricants. International Journal of Heat and Mass Transfer, 2018, 126, 1168-1176.	4.8	16
8	Experimental research on degradation of nanolubricant–refrigerant mixture during continuous alternation processes of condensation and evaporation. International Journal of Refrigeration, 2017, 76, 97-108.	3.4	22
9	Influence of fluorinated self-assembled monolayer on wetting dynamics during evaporation of refrigerant–oil mixture on metal surface. International Journal of Refrigeration, 2017, 79, 76-88.	3.4	4
10	Experimental investigation on TiO 2 nanoparticle migration from refrigerant–oil mixture to lubricating oil during refrigerant dryout. International Journal of Refrigeration, 2017, 77, 75-86.	3.4	15
11	Tumor-triggered drug release from calcium carbonate-encapsulated gold nanostars for near-infrared photodynamic/photothermal combination antitumor therapy. Theranostics, 2017, 7, 1650-1662.	10.0	96
12	Experimental research on wetting behavior of refrigerant–oil mixture on micro/nanostructured surface. International Journal of Refrigeration, 2016, 62, 207-221.	3.4	6
13	Experimental research on particle aggregation behavior in nanorefrigerant–oil mixture. Applied Thermal Engineering, 2016, 98, 944-953.	6.0	27
14	Influence of oil concentration on wetting behavior during evaporation of refrigerant–oil mixture on copper surface. International Journal of Refrigeration, 2016, 61, 23-36.	3.4	18
15	Influences of primary particle parameters and surfactant on aggregation behavior of nanoparticles in nanorefrigerant. Energy, 2015, 89, 410-420.	8.8	43
16	Dispersion stability of multi-walled carbon nanotubes in refrigerant with addition of surfactant. Applied Thermal Engineering, 2015, 91, 163-171.	6.0	67