List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2782194/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Osmotic Stress Signaling and Osmoadaptation in Yeasts. Microbiology and Molecular Biology Reviews, 2002, 66, 300-372.	6.6	1,452
2	The complete DNA sequence of yeast chromosome III. Nature, 1992, 357, 38-46.	27.8	924
3	GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway Molecular and Cellular Biology, 1994, 14, 4135-4144.	2.3	641
4	The Transcriptional Response of Saccharomyces cerevisiae to Osmotic Shock. Journal of Biological Chemistry, 2000, 275, 8290-8300.	3.4	491
5	The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded byGPD1andGPD2have distinct roles in osmoadaptation and redox regulation. EMBO Journal, 1997, 16, 2179-2187.	7.8	469
6	Integrative model of the response of yeast to osmotic shock. Nature Biotechnology, 2005, 23, 975-982.	17.5	408
7	Trehalose synthase: guard to the gate of glycolysis in yeast?. Trends in Biochemical Sciences, 1995, 20, 3-10.	7.5	390
8	Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. Molecular Microbiology, 1999, 31, 1087-1104.	2.5	357
9	Distributed biological computation with multicellular engineered networks. Nature, 2011, 469, 207-211.	27.8	303
10	Yeast Osmoregulation. Methods in Enzymology, 2007, 428, 29-45.	1.0	286
11	Osmotic Stress-Induced Gene Expression in <i>Saccharomyces cerevisiae</i> Requires Msn1p and the Novel Nuclear Factor Hot1p. Molecular and Cellular Biology, 1999, 19, 5474-5485.	2.3	248
12	Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress. Microbiology (United Kingdom), 1998, 144, 671-680.	1.8	242
13	The Yeast Glycerol 3-Phosphatases Gpp1p and Gpp2p Are Required for Glycerol Biosynthesis and Differentially Involved in the Cellular Responses to Osmotic, Anaerobic, and Oxidative Stress. Journal of Biological Chemistry, 2001, 276, 3555-3563.	3.4	232
14	Roles of Sugar Alcohols in Osmotic Stress Adaptation. Replacement of Glycerol by Mannitol and Sorbitol in Yeast. Plant Physiology, 1999, 121, 45-52.	4.8	201
15	Control of high osmolarity signalling in the yeast <i>Saccharomyces cerevisiae</i> . FEBS Letters, 2009, 583, 4025-4029.	2.8	196
16	Composition and Functional Analysis of the Saccharomyces cerevisiae Trehalose Synthase Complex. Journal of Biological Chemistry, 1998, 273, 33311-33319.	3.4	189
17	Switching the mode of metabolism in the yeast Saccharomyces cerevisiae. EMBO Reports, 2004, 5, 532-537.	4.5	177
18	Characterization of PDC6, a third structural gene for pyruvate decarboxylase in Saccharomyces cerevisiae. Journal of Bacteriology, 1991, 173, 7963-7969.	2.2	166

#	Article	IF	CITATIONS
19	The Saccharomyces cerevisiae Sko1p transcription factor mediates HOG pathway-dependent osmotic regulation of a set of genes encoding enzymes implicated in protection from oxidative damage. Molecular Microbiology, 2001, 40, 1067-1083.	2.5	161
20	The growth and signalling defects of the ggs1 (fdp1/byp1) deletion mutant on glucose are suppressed by a deletion of the gene encoding hexokinase PII. Current Genetics, 1993, 23, 281-289.	1.7	159
21	Thiamin metabolism and thiamin diphosphate-dependent enzymes in the yeast Saccharomyces cerevisiae: genetic regulation. BBA - Proteins and Proteomics, 1998, 1385, 201-219.	2.1	158
22	Autoregulation may control the expression of yeast pyruvate decarboxylase structural genes PDC1 and PDC5. FEBS Journal, 1990, 188, 615-621.	0.2	151
23	Crystal Structure of a Yeast Aquaporin at 1.15 Ã Reveals a Novel Gating Mechanism. PLoS Biology, 2009, 7, e1000130.	5.6	150
24	Aquaporin Expression Correlates with Freeze Tolerance in Baker's Yeast, and Overexpression Improves Freeze Tolerance in Industrial Strains. Applied and Environmental Microbiology, 2002, 68, 5981-5989.	3.1	138
25	A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes. Lab on A Chip, 2007, 7, 71-76.	6.0	132
26	Molecular cloning of a gene involved in glucose sensing in the yeast Saccharomyces cerevisiae. Molecular Microbiology, 1993, 8, 927-943.	2.5	130
27	Differential Requirement of the Yeast Sugar Kinases for Sugar Sensing in Establishing the Catabolite-Repressed State. FEBS Journal, 1996, 241, 633-643.	0.2	119
28	An integrated view on a eukaryotic osmoregulation system. Current Genetics, 2015, 61, 373-382.	1.7	119
29	Different signalling pathways contribute to the control of GPD1 gene expression by osmotic stress in Saccharomyces cerevisiae. Microbiology (United Kingdom), 1999, 145, 715-727.	1.8	115
30	Evidence for trehalose-6-phosphate-dependent and -independent mechanisms in the control of sugar influx into yeast glycolysis. Molecular Microbiology, 1996, 20, 981-991.	2.5	111
31	Aquaporins in yeasts and filamentous fungi. Biology of the Cell, 2005, 97, 487-500.	2.0	111
32	Characterization of the osmotic-stress response inSaccharomyces cerevisiae: osmotic stress and glucose repression regulate glycerol-3-phosphate dehydrogenase independently. Current Genetics, 1994, 25, 12-18.	1.7	108
33	Microbial MIP channels. Trends in Microbiology, 2000, 8, 33-38.	7.7	108
34	Role of Hexose Transport in Control of Glycolytic Flux in <i>Saccharomyces cerevisiae</i> . Applied and Environmental Microbiology, 2004, 70, 5323-5330.	3.1	107
35	The genome of the xerotolerant mold Wallemia sebi reveals adaptations to osmotic stress and suggests cryptic sexual reproduction. Fungal Genetics and Biology, 2012, 49, 217-226.	2.1	103
36	Structural analysis of the subunits of the trehaloseâ€6â€phosphate synthase/phosphatase complex in Saccharomyces cerevisiae and their function during heat shock. Molecular Microbiology, 1997, 24, 687-696.	2.5	101

#	Article	IF	CITATIONS
37	lsc1p Plays a Key Role in Hydrogen Peroxide Resistance and Chronological Lifespan through Modulation of Iron Levels and Apoptosis. Molecular Biology of the Cell, 2008, 19, 865-876.	2.1	96
38	Quantitative Analysis of Glycerol Accumulation, Glycolysis and Growth under Hyper Osmotic Stress. PLoS Computational Biology, 2013, 9, e1003084.	3.2	95
39	Transcription factor clusters regulate genes in eukaryotic cells. ELife, 2017, 6, .	6.0	94
40	Biophysical properties of Saccharomyces cerevisiae and their relationship with HOG pathway activation. European Biophysics Journal, 2010, 39, 1547-1556.	2.2	90
41	Characteristics of Fps1-dependent and -independent glycerol transport in Saccharomyces cerevisiae. Journal of Bacteriology, 1997, 179, 7790-7795.	2.2	87
42	A Short Regulatory Domain Restricts Glycerol Transport through Yeast Fps1p. Journal of Biological Chemistry, 2003, 278, 6337-6345.	3.4	87
43	Osmotic adaptation in yeast-control of the yeast osmolyte system. International Review of Cytology, 2002, 215, 149-187.	6.2	85
44	Stimulation of the yeast high osmolarity glycerol (HOG) pathway: evidence for a signal generated by a change in turgor rather than by water stress. FEBS Letters, 2000, 472, 159-165.	2.8	81
45	AtPTR3, a wound-induced peptide transporter needed for defence against virulent bacterial pathogens in Arabidopsis. Planta, 2007, 225, 1431-1445.	3.2	78
46	Substrate Activation of Brewers' Yeast Pyruvate Decarboxylase Is Abolished by Mutation of Cysteine 221 to Serine. Biochemistry, 1994, 33, 5630-5635.	2.5	73
47	Comparative genomics of the HOG-signalling system in fungi. Current Genetics, 2006, 49, 137-151.	1.7	73
48	Characterisation of PDC2, a gene necessary for high level expression of pyruvate decarboxylase structural genes in Saccharomyces cerevlsiae. Molecular Genetics and Genomics, 1993, 241-241, 657-666.	2.4	71
49	Novel alleles of yeast hexokinase PII with distinct effects on catalytic activity and catabolite repression of SUC2. Microbiology (United Kingdom), 1999, 145, 703-714.	1.8	69
50	A deletion of the PDC1 gene for pyruvate decarboxylase of yeast causes a different phenotype than previously isolated point mutations. Current Genetics, 1989, 15, 75-81.	1.7	68
51	Control of glucose influx into glycolysis and pleiotropic effects studied in different isogenic sets of Saccharomyces cerevisiae mutants in trehalose biosynthesis. Current Genetics, 1995, 27, 110-122.	1.7	66
52	Yeast systems biology to unravel the network of life. Yeast, 2006, 23, 227-238.	1.7	66
53	Pdc2 coordinates expression of the THI regulon in the yeast Saccharomyces cerevisiae. Molecular Genetics and Genomics, 2006, 276, 147-161.	2.1	66
54	Ser3p (Yer081wp) and Ser33p (Yil074cp) Are Phosphoglycerate Dehydrogenases in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2003, 278, 10264-10272.	3.4	63

#	Article	IF	CITATIONS
55	Yeast reveals unexpected roles and regulatory features of aquaporins and aquaglyceroporins. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 1482-1491.	2.4	59
56	Molecular communication: crosstalk between the Snf1 and other signaling pathways. FEMS Yeast Research, 2015, 15, fov026.	2.3	59
57	Combination of Two Activating Mutations in One HOG1 Gene Forms Hyperactive Enzymes That Induce Growth Arrest. Molecular and Cellular Biology, 2003, 23, 4826-4840.	2.3	58
58	Role of Glu51 for Cofactor Binding and Catalytic Activity in Pyruvate Decarboxylase from Yeast Studied by Site-Directed Mutagenesisâ€. Biochemistry, 1997, 36, 1900-1905.	2.5	57
59	Anaerobicity Prepares Saccharomyces cerevisiae Cells for Faster Adaptation to Osmotic Shock. Eukaryotic Cell, 2004, 3, 1381-1390.	3.4	57
60	Polymorphism of Saccharomyces cerevisiae aquaporins. Yeast, 2000, 16, 897-903.	1.7	56
61	Robustness and fragility in the yeast high osmolarity glycerol (HOC) signalâ€ŧransduction pathway. Molecular Systems Biology, 2009, 5, 281.	7.2	56
62	Molecular analysis of the structural gene for yeast transaldolase. FEBS Journal, 1990, 188, 597-603.	0.2	55
63	PDC6, a weakly expressed pyruvate decarboxylase gene from yeast, is activated when fused spontaneously under the control of the PDC1 promoter. Current Genetics, 1991, 20, 373-378.	1.7	55
64	The yeast osmostress response is carbon source dependent. Scientific Reports, 2017, 7, 990.	3.3	55
65	A Regulatory Domain in the C-terminal Extension of the Yeast Glycerol Channel Fps1p. Journal of Biological Chemistry, 2004, 279, 14954-14960.	3.4	54
66	A framework for mapping, visualisation and automatic model creation of signalâ€ŧransduction networks. Molecular Systems Biology, 2012, 8, 578.	7.2	54
67	Nonsense suppressors partially revert the decrease of the mRNA level of a nonsense mutant allele in yeast. Current Genetics, 1990, 17, 77-79.	1.7	53
68	The Pep4p vacuolar proteinase contributes to the turnover of oxidized proteins but PEP4 overexpression is not sufficient to increase chronological lifespan in Saccharomyces cerevisiae. Microbiology (United Kingdom), 2006, 152, 3595-3605.	1.8	53
69	Implications of FPS1 deletion and membrane ergosterol content for glycerol efflux from Saccharomyces cerevisiae. FEMS Yeast Research, 2001, 1, 205-211.	2.3	52
70	Comparative analysis of HOG pathway proteins to generate hypotheses for functional analysis. Current Genetics, 2006, 49, 152-165.	1.7	52
71	The pathway by which the yeast protein kinase Snf1p controls acquisition of sodium tolerance is different from that mediating glucose regulation. Microbiology (United Kingdom), 2008, 154, 2814-2826.	1.8	50
72	Fungal fludioxonil sensitivity is diminished by a constitutively active form of the group III histidine kinase. FEBS Letters, 2012, 586, 2417-2422.	2.8	50

#	Article	IF	CITATIONS
73	A novel chloroplast localized Rab GTPase protein CPRabA5e is involved in stress, development, thylakoid biogenesis and vesicle transport in Arabidopsis. Plant Molecular Biology, 2014, 84, 675-692.	3.9	50
74	Autoregulation of yeast pyruvate decarboxylase gene expression requires the enzyme but not its catalytic activity. FEBS Journal, 1999, 262, 191-201.	0.2	48
75	Rewiring yeast osmostress signalling through the MAPK network reveals essential and non-essential roles of Hog1 in osmoadaptation. Scientific Reports, 2014, 4, 4697.	3.3	47
76	Glucose-induced regulatory defects in the Saccharomyces cerevisiae byp1 growth initiation mutant and identification of MIG1 as a partial suppressor. Journal of Bacteriology, 1992, 174, 4183-4188.	2.2	46
77	Existence of a tightly regulated water channel in <i>Saccharomyces cerevisiae</i> . FEBS Journal, 2001, 268, 334-343.	0.2	45
78	Disruption of the Kluyveromyces lactis GGS1 gene causes inability to grow on glucose and fructose and is suppressed by mutations that reduce sugar uptake. FEBS Journal, 1993, 217, 701-713.	0.2	44
79	The Saccharomyces cerevisiae aquaporin Aqy1 is involved in sporulation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17422-17427.	7.1	44
80	Pheromone-Induced Morphogenesis Improves Osmoadaptation Capacity by Activating the HOG MAPK Pathway. Science Signaling, 2013, 6, ra26.	3.6	44
81	Molecular and Functional Study ofAQY1fromSaccharomyces cerevisiae:Role of the C-Terminal Domain. Biochemical and Biophysical Research Communications, 1999, 257, 139-144.	2.1	43
82	Osmostress-Induced Cell Volume Loss Delays Yeast Hog1 Signaling by Limiting Diffusion Processes and by Hog1-Specific Effects. PLoS ONE, 2013, 8, e80901.	2.5	43
83	The yeast Mig1 transcriptional repressor is dephosphorylated by glucose-dependent and -independent mechanisms. FEMS Microbiology Letters, 2017, 364, .	1.8	42
84	Thiamine repression and pyruvate decarboxylase autoregulation independently control the expression of theSaccharomyces cerevisiae PDC5gene. FEBS Letters, 1999, 449, 245-250.	2.8	41
85	Expression of heterologous aquaporins for functional analysis in Saccharomyces cerevisiae. Current Genetics, 2006, 50, 247-255.	1.7	41
86	Role of cysteines in the activation and inactivation of brewers' yeast pyruvate decarboxylase investigated with a PDC1-PDC6 fusion protein. Biochemistry, 1993, 32, 2704-2709.	2.5	39
87	Transcriptional responses to glucose at different glycolytic rates in Saccharomyces cerevisiae. FEBS Journal, 2004, 271, 4855-4864.	0.2	38
88	Conditional Osmotic Stress in Yeast. Journal of Biological Chemistry, 2005, 280, 7186-7193.	3.4	38
89	Yeast AMP-activated Protein Kinase Monitors Glucose Concentration Changes and Absolute Glucose Levels. Journal of Biological Chemistry, 2014, 289, 12863-12875.	3.4	38
90	Bridging the gaps in systems biology. Molecular Genetics and Genomics, 2014, 289, 727-734.	2.1	38

#	Article	IF	CITATIONS
91	Engineering of a Novel Saccharomyces cerevisiae Wine Strain with a Respiratory Phenotype at High External Glucose Concentrations. Applied and Environmental Microbiology, 2005, 71, 6185-6192.	3.1	37
92	Strategy for deletion of complete open reading frames in Saccharomyces cerevisiae. Current Genetics, 1995, 27, 306-308.	1.7	36
93	Transposon mutagenesis reveals novel loci affecting tolerance to salt stress and growth at low temperature. Current Genetics, 2001, 40, 27-39.	1.7	36
94	Quantification of cell volume changes upon hyperosmotic stress in Saccharomyces cerevisiae. Integrative Biology (United Kingdom), 2011, 3, 1120.	1.3	36
95	Cloning and expression on a multicopy vector of five invertase genes of Saccharomyces cerevisiae. Current Genetics, 1986, 11, 217-225.	1.7	35
96	Structural analysis of the 5′ regions of yeast SUC genes revealed analogous palindromes in SUC, MAL and GAL. Molecular Genetics and Genomics, 1988, 211, 446-454.	2.4	34
97	Identification of residues controlling transport through the yeast aquaglyceroporin Fps1 using a genetic screen. FEBS Journal, 2004, 271, 771-779.	0.2	32
98	Short cut to 1,2,3-triazole-based p38 MAP kinase inhibitorsvia [3+2]-cycloaddition chemistry. New Journal of Chemistry, 2009, 33, 1010-1016.	2.8	32
99	Glucose deâ€repression by yeast <scp>AMP</scp> â€activated protein kinase <scp>SNF</scp> 1 is controlled via at least two independent steps. FEBS Journal, 2014, 281, 1901-1917.	4.7	31
100	Trehalose accumulation in mutants of Saccharomyces cerevisiae deleted in the UDPG-dependent trehalose synthase-phosphatase complex. Biochimica Et Biophysica Acta - General Subjects, 1997, 1335, 40-50.	2.4	29
101	The cell division cycle gene CDC60 encodes cytosolic leucyl-tRNA synthetase in Saccharomyces cerevisiae. Gene, 1992, 120, 43-49.	2.2	28
102	Production, characterization and crystallization of the Plasmodium falciparum aquaporin. Protein Expression and Purification, 2008, 59, 69-78.	1.3	28
103	Expression of the yeast aquaporin Aqy2 affects cell surface properties under the control of osmoregulatory and morphogenic signalling pathways. Molecular Microbiology, 2009, 74, 1272-1286.	2.5	28
104	Synthetic biology: lessons from engineering yeast <scp>MAPK</scp> signalling pathways. Molecular Microbiology, 2013, 88, 5-19.	2.5	28
105	Analysis of the Pore of the Unusual Major Intrinsic Protein Channel, Yeast Fps1p. Journal of Biological Chemistry, 2001, 276, 36543-36549.	3.4	27
106	The osmotic stress response of Saccharomyces cerevisiae. , 2003, , 121-200.		27
107	Systems Level Analysis of the Yeast Osmo-Stat. Scientific Reports, 2016, 6, 30950.	3.3	26
108	A simple mathematical model of adaptation to high osmolarity in yeast. In Silico Biology, 2006, 6, 193-214.	0.9	26

#	Article	IF	CITATIONS
109	A Nonlinear Mixed Effects Approach for Modeling the Cell-To-Cell Variability of Mig1 Dynamics in Yeast. PLoS ONE, 2015, 10, e0124050.	2.5	25
110	Gis4, a New Component of the Ion Homeostasis System in the Yeast Saccharomyces cerevisiae. Eukaryotic Cell, 2006, 5, 1611-1621.	3.4	23
111	Design, Synthesis, and Characterization of a Highly Effective Hog1 Inhibitor: A Powerful Tool for Analyzing MAP Kinase Signaling in Yeast. PLoS ONE, 2011, 6, e20012.	2.5	23
112	The Yeast Systems Biology Network: mating communities. Current Opinion in Biotechnology, 2005, 16, 356-360.	6.6	22
113	Single-cell study links metabolism with nutrient signaling and reveals sources of variability. BMC Systems Biology, 2017, 11, 59.	3.0	22
114	Strategies for structuring interdisciplinary education in Systems Biology: an European perspective. Npj Systems Biology and Applications, 2016, 2, 16011.	3.0	21
115	The mitogenâ€activated protein kinase Slt2 modulates arsenite transport through the aquaglyceroporin Fps1. FEBS Letters, 2016, 590, 3649-3659.	2.8	21
116	The byp1-3 allele of the Saccharomyces cerevisiae GGS1/TPS1 gene and its multi-copy suppressor tRNAGLN (CAG): Ggs1/Tps1 protein levels restraining growth on fermentable sugars and trehalose accumulation. Current Genetics, 1994, 26, 295-301.	1.7	20
117	Network reconstruction and validation of the Snf1/AMPK pathway in baker's yeast based on a comprehensive literature review. Npj Systems Biology and Applications, 2015, 1, 15007.	3.0	20
118	Automated Ensemble Modeling with modelMaGe: Analyzing Feedback Mechanisms in the Sho1 Branch of the HOG Pathway. PLoS ONE, 2011, 6, e14791.	2.5	20
119	Time course gene expression profiling of yeast spore germination reveals a network of transcription factors orchestrating the global response. BMC Genomics, 2012, 13, 554.	2.8	19
120	Characterising Maturation of GFP and mCherry of Genomically Integrated Fusions in Saccharomyces cerevisiae. Bio-protocol, 2018, 8, e2710.	0.4	18
121	A region in the yeast genome which favours multiple integration of DNA via homologous recombination. Current Genetics, 1987, 12, 519-526.	1.7	17
122	Chapter 8 Microbial water channels and glycerol facilitators. Current Topics in Membranes, 2001, 51, 335-370.	0.9	16
123	A novel yeast hybrid modeling framework integrating Boolean and enzyme-constrained networks enables exploration of the interplay between signaling and metabolism. PLoS Computational Biology, 2021, 17, e1008891.	3.2	16
124	Accumulation and release of the osmolyte glycerol is independent of the putative MIP channel Spac977.17p in Schizosaccharomyces pombe. Antonie Van Leeuwenhoek, 2004, 85, 85-92.	1.7	15
125	The naturally occurring silent invertase structural gene suc2° contains an amber stop codon that is occasionally read through. Molecular Genetics and Genomics, 1989, 216, 511-516.	2.4	14
126	Yeast Aquaglyceroporins Use the Transmembrane Core to Restrict Glycerol Transport. Journal of Biological Chemistry, 2012, 287, 23562-23570.	3.4	14

8

#	Article	IF	CITATIONS
127	Differential Role of HAMP-like Linkers in Regulating the Functionality of the Group III Histidine Kinase DhNik1p. Journal of Biological Chemistry, 2014, 289, 20245-20258.	3.4	14
128	Nobel Yeast Research. FEMS Yeast Research, 2016, 16, fow094.	2.3	14
129	Correlating single-molecule characteristics of the yeast aquaglyceroporin Fps1 with environmental perturbations directly in living cells. Methods, 2021, 193, 46-53.	3.8	10
130	Comparison of the nucleotide sequences of a yeast gene family. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1989, 215, 79-87.	1.0	9
131	Saccharomyces cerevisiae Spore Germination. Topics in Current Genetics, 2010, , 29-41.	0.7	9
132	Initiation of the transcriptional response to hyperosmotic shock correlates with the potential for volume recovery. FEBS Journal, 2013, 280, 3854-3867.	4.7	9
133	Regulation of genes encoding subunits of the trehalose synthase complex in. Molecular Genetics and Genomics, 1996, 252, 470.	2.4	9
134	Efficient Construction of Homozygous Diploid Strains Identifies Genes Required for the Hyper-Filamentous Phenotype in Saccharomyces cerevisiae. PLoS ONE, 2011, 6, e26584.	2.5	9
135	The mammalian AMPâ€activated protein kinase complex mediates glucose regulation of gene expression in the yeast <i>Saccharomyces cerevisiae</i> . FEBS Letters, 2014, 588, 2070-2077.	2.8	8
136	TheFPS1 gene product functions as a glycerol facilitator in the yeastSaccharomyces cerevisiae. Folia Microbiologica, 1994, 39, 534-536.	2.3	7
137	How quantitative measures unravel design principles in multi-stage phosphorylation cascades. Journal of Theoretical Biology, 2008, 254, 27-36.	1.7	7
138	Mig1 localization exhibits biphasic behavior which is controlled by both metabolic and regulatory roles of the sugar kinases. Molecular Genetics and Genomics, 2020, 295, 1489-1500.	2.1	7
139	A fungicide-responsive kinase as a tool for synthetic cell fate regulation. Nucleic Acids Research, 2015, 43, 7162-7170.	14.5	6
140	Comparison of the nucleotide sequences of a yeast gene family. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1989, 215, 89-94.	1.0	5
141	Hog1-mediated Metabolic Adjustments Following Hyperosmotic Shock in the Yeast Saccharomyces cerevisiae. , 2007, , 141-158.		5
142	TheAshbya gossypiiEF-1αpromoter of the ubiquitously used MX cassettes is toxic toSaccharomyces cerevisiae. FEBS Letters, 2011, 585, 3907-3913.	2.8	5
143	Overexpression and Purification of the Glycerol Transport Facilitators, Fps1p and GlpF, in Saccharomyces Cerevisiae and Escherichia Coli. , 2000, , 29-34.		5
144	Isolation and characterization of the TIM10 homologue from the yeastPichia sorbitophila: a putative component of the mitochondrial protein import system. Yeast, 2000, 16, 589-596.	1.7	4

0

#	Article	IF	CITATIONS
145	Chapter 8 Integrative analysis of yeast osmoregulation. British Mycological Society Symposia Series, 2008, , 109-128.	0.5	4
146	Systems Biology. FEBS Letters, 2009, 583, 3881-3881.	2.8	4
147	Applying Microfluidic Systems to Study Effects of Glucose at Single-Cell Level. Methods in Molecular Biology, 2018, 1713, 109-121.	0.9	4
148	Exploring the impact of osmoadaptation on glycolysis using time-varying response-coefficients. Genome Informatics, 2008, 20, 77-90.	0.4	4
149	The Effect of Lithium on the Budding Yeast Saccharomyces cerevisiae upon Stress Adaptation. Microorganisms, 2022, 10, 590.	3.6	4
150	EXPLORING THE IMPACT OF OSMOADAPTATION ON GLYCOLYSIS USING TIME-VARYING RESPONSE-COEFFICIENTS. , 2008, , .		3
151	Editor's comment on "CRISPR/Cas9-mediated gene editing in human zygotes using Cas9 proteinâ€. Molecular Genetics and Genomics, 2017, 292, 535-536.	2.1	3
152	Implications of deletion and membrane ergosterol content for glycerol efflux from. FEMS Yeast Research, 2001, 1, 205-211.	2.3	2
153	Modelling signalling pathways – a yeast approach. Topics in Current Genetics, 2005, , 277-302.	0.7	2
154	One hundred years of Molecular Genetics and Genomics: 100Âyears of extra-nuclear inheritance. Molecular Genetics and Genomics, 2010, 283, 197-198.	2.1	2
155	Yeast Aquaporins and Aquaglyceroporins: A Matter of Lifestyle. , 2016, , 77-100.		2
156	Case study in systematic modelling: thiamine uptake in the yeast Saccharomyces cerevisiae. Essays in Biochemistry, 2008, 45, 135-146.	4.7	2
157	Regulation der Genexpression— Molekulare Mechanismen bei Eukaryoten. Biologie in Unserer Zeit, 1989, 19, 149-156.	0.2	1
158	Genome-wide expression profile of the mnn2Δ mutant of Saccharomyces cerevisiae. Antonie Van Leeuwenhoek, 2006, 89, 485-494.	1.7	1
159	Preface. Biochimica Et Biophysica Acta - General Subjects, 2011, 1810, 913.	2.4	1
160	Shutting the MAP Off - and On Again?. Current Genomics, 2004, 5, 637-647.	1.6	1
161	Chapter 9 Future directions of aquaporin research. Current Topics in Membranes, 2001, 51, 371-380.	0.9	0

A microfluidic system for studies of stress response in single cells using optical tweezers. , 2006, , .

#	Article	IF	CITATIONS
163	Gothenburg special issue: Molecules of Life. FEBS Letters, 2010, 584, 2493-2493.	2.8	0
164	Expression of concern: Sequences enhancing cassava mosaic disease symptoms occur in the cassava genome and are associated with South African cassava mosaic virus infection by A. T. Maredza, F. Allie, G. Plata, M. E. C. Rey. Molecular Genetics and Genomics, 2016, 291, 1489-1489.	2.1	0
165	Transcription Factor Clustering in Live Yeast Cells. Biophysical Journal, 2016, 110, 231a.	0.5	0
166	An Investigation of the Possible Existence of Homologues of FPS1, a Glycerol Facilitator of Saccharomyces Cerevisiae, in the Osmotolerant Yeast Zygosaccharomyces Rouxii. , 2000, , 393-403.		0
167	Functional Analysis of the Unusual Signature Motifs of the Yeast MIP Channel, Fps1p. , 2000, , 3-11.		0
168	Function and Regulation of the Yeast MIP Glycerol Export Channel Fps1p. , 2000, , 423-430.		0
169	Moving from Genetics to Systems Biology. History, Philosophy and Theory of the Life Sciences, 2017, , 125-134.	0.4	0
170	Report of an EU projects workshop on systems biology held in Brussels, Belgium on 8 December 2004. IET Systems Biology, 2005, 152, 55-60.	2.0	0