
Roger Woodgate

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/278175/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DNA Polymerase Î ¹ Interacts with Both the TRAF-like and UBL1-2 Domains of USP7. Journal of Molecular Biology, 2021, 433, 166733.	4.2	10
2	Nuclear magnetic resonance spectral data of the USP7 TRAF and UBL1-2 domains in complex with DNA polymerase l1 peptides. Data in Brief, 2021, 34, 106680.	1.0	0
3	The SOS Error-Prone DNA Polymerase V Mutasome and \hat{l}^2 -Sliding Clamp Acting in Concert on Undamaged DNA and during Translesion Synthesis. Cells, 2021, 10, 1083.	4.1	4
4	Tracking Escherichia coli DNA polymerase V to the entire genome during the SOS response. DNA Repair, 2021, 101, 103075.	2.8	2
5	CroS _{R391} , an ortholog of the λ Cro repressor, plays a major role in suppressing polV _{R391} â€dependent mutagenesis. Molecular Microbiology, 2021, 116, 877-889.	2.5	5
6	Novel <i>Escherichia coli</i> active site <i>dnaE</i> alleles with altered base and sugar selectivity. Molecular Microbiology, 2021, 116, 909-925.	2.5	3
7	Identification and Characterization of Thermostable Y-Family DNA Polymerases Ε, Î1, κ and Rev1 From a Lower Eukaryote, Thermomyces lanuginosus. Frontiers in Molecular Biosciences, 2021, 8, 778400.	3.5	1
8	Mysterious and fascinating: DNA polymerase É© remains enigmatic 20 years after its discovery. DNA Repair, 2020, 93, 102914.	2.8	7
9	Ubiquitin and Ubiquitin-Like Proteins Are Essential Regulators of DNA Damage Bypass. Cancers, 2020, 12, 2848.	3.7	3
10	Single-molecule live-cell imaging reveals RecB-dependent function of DNA polymerase IV inÂdouble strand break repair. Nucleic Acids Research, 2020, 48, 8490-8508.	14.5	15
11	USP7 Is a Master Regulator of Genome Stability. Frontiers in Cell and Developmental Biology, 2020, 8, 717.	3.7	54
12	Role of RNase H enzymes in maintaining genome stability in Escherichia coli expressing a steric-gate mutant of pol VICE391. DNA Repair, 2019, 84, 102685.	2.8	7
13	SetRICE391, a negative transcriptional regulator of the integrating conjugative element 391 mutagenic response. DNA Repair, 2019, 73, 99-109.	2.8	6
14	A synthetic genetic polymer with an uncharged backbone chemistry based on alkyl phosphonate nucleic acids. Nature Chemistry, 2019, 11, 533-542.	13.6	69
15	DNA polymerase Î ¹ is acetylated in response to SN2 alkylating agents. Scientific Reports, 2019, 9, 4789.	3.3	4
16	Conformational regulation of Escherichia coli DNA polymerase V by RecA and ATP. PLoS Genetics, 2019, 15, e1007956.	3.5	16
17	DNA polymerase η contributes to genome-wide lagging strand synthesis. Nucleic Acids Research, 2019, 47, 2425-2435.	14.5	17
18	Spatial and temporal organization of RecA in the Escherichia coli DNA-damage response. ELife, 2019, 8, .	6.0	48

#	Article	IF	CITATIONS
19	Ribonucleotide discrimination by translesion synthesis DNA polymerases. Critical Reviews in Biochemistry and Molecular Biology, 2018, 53, 382-402.	5.2	32
20	DNA polymerase IV primarily operates outside of DNA replication forks in Escherichia coli. PLoS Genetics, 2018, 14, e1007161.	3.5	55
21	Mouse DNA polymerase Î ¹ lacking the forty-two amino acids encoded by exon-2 is catalytically inactive in vitro. DNA Repair, 2017, 50, 71-76.	2.8	4
22	SHPRH regulates rRNA transcription by recognizing the histone code in an mTOR-dependent manner. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3424-E3433.	7.1	25
23	Translesion DNA polymerases in eukaryotes: what makes them tick?. Critical Reviews in Biochemistry and Molecular Biology, 2017, 52, 274-303.	5.2	193
24	DNA polymerase \hat{l}^1 : The long and the short of it!. DNA Repair, 2017, 58, 47-51.	2.8	6
25	Mutations for Worse or Better: Low-Fidelity DNA Synthesis by SOS DNA Polymerase V Is a Tightly Regulated Double-Edged Sword. Biochemistry, 2016, 55, 2309-2318.	2.5	33
26	DNA polymerase Î ¹ functions in the generation of tandem mutations during somatic hypermutation of antibody genes. Journal of Experimental Medicine, 2016, 213, 1675-1683.	8.5	27
27	Insights into the complex levels of regulation imposed on Escherichia coli DNA polymerase V. DNA Repair, 2016, 44, 42-50.	2.8	49
28	Posttranslational Regulation of Human DNA Polymerase Î ¹ . Journal of Biological Chemistry, 2015, 290, 27332-27344.	3.4	13
29	Regulation of Mutagenic DNA Polymerase V Activation in Space and Time. PLoS Genetics, 2015, 11, e1005482.	3.5	86
30	A RecA Protein Surface Required for Activation of DNA Polymerase V. PLoS Genetics, 2015, 11, e1005066.	3.5	32
31	Regulation of translesion DNA synthesis: Posttranslational modification of lysine residues in key proteins. DNA Repair, 2015, 29, 166-179.	2.8	31
32	Redundancy in ribonucleotide excision repair: Competition, compensation, and cooperation. DNA Repair, 2015, 29, 74-82.	2.8	22
33	Unlocking the steric gate of DNA polymerase η leads to increased genomic instability in Saccharomyces cerevisiae. DNA Repair, 2015, 35, 1-12.	2.8	22
34	DNA polymerase V activity is autoregulated by a novel intrinsic DNA-dependent ATPase. ELife, 2014, 3, e02384.	6.0	22
35	The Steric Gate of DNA Polymerase Î ¹ Regulates Ribonucleotide Incorporation and Deoxyribonucleotide Fidelity. Journal of Biological Chemistry, 2014, 289, 9136-9145.	3.4	34
36	Investigating the mechanisms of ribonucleotide excision repair in Escherichia coli. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2014, 761, 21-33.	1.0	34

#	Article	IF	CITATIONS
37	Translesion DNA Polymerases. Cold Spring Harbor Perspectives in Biology, 2013, 5, a010363-a010363.	5.5	229
38	Removal of Misincorporated Ribonucleotides from Prokaryotic Genomes: An Unexpected Role for Nucleotide Excision Repair. PLoS Genetics, 2013, 9, e1003878.	3.5	62
39	Ubiquitin mediates the physical and functional interaction between human DNA polymerases η and ι. Nucleic Acids Research, 2013, 41, 1649-1660.	14.5	21
40	UmuD and UmuD′ Proteins. , 2013, , 3487-3492.		1
41	Critical amino acids in Escherichia coli UmuC responsible for sugar discrimination and base-substitution fidelity. Nucleic Acids Research, 2012, 40, 6144-6157.	14.5	36
42	A short adaptive path from DNA to RNA polymerases. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8067-8072.	7.1	93
43	Translesion DNA Synthesis. EcoSal Plus, 2012, 5, .	5.4	18
44	Escherichia coli UmuC active site mutants: Effects on translesion DNA synthesis, mutagenesis and cell survival. DNA Repair, 2012, 11, 726-732.	2.8	22
45	Y-family DNA polymerases and their role in tolerance of cellular DNA damage. Nature Reviews Molecular Cell Biology, 2012, 13, 141-152.	37.0	550
46	A strategy for the expression of recombinant proteins traditionally hard to purify. Analytical Biochemistry, 2012, 429, 132-139.	2.4	23
47	Mechanisms Employed by Escherichia coli to Prevent Ribonucleotide Incorporation into Genomic DNA by Pol V. PLoS Genetics, 2012, 8, e1003030.	3.5	34
48	Simple and efficient purification of Escherichia coli DNA polymerase V: Cofactor requirements for optimal activity and processivity in vitro. DNA Repair, 2012, 11, 431-440.	2.8	33
49	Uracil residues dependent on the deaminase AID in immunoglobulin gene variable and switch regions. Nature Immunology, 2011, 12, 70-76.	14.5	106
50	Molecular breeding of polymerases for resistance to environmental inhibitors. Nucleic Acids Research, 2011, 39, e51-e51.	14.5	58
51	A new model for SOS-induced mutagenesis: how RecA protein activates DNA polymerase V. Critical Reviews in Biochemistry and Molecular Biology, 2010, 45, 171-184.	5.2	129
52	A real-time fluorescence method for enzymatic characterization of specialized human DNA polymerases. Nucleic Acids Research, 2009, 37, e128-e128.	14.5	53
53	Insights into the cellular role of enigmatic DNA polymerase Î ¹ . DNA Repair, 2009, 8, 420-423.	2.8	15
54	Construction of a circular single-stranded DNA template containing a defined lesion. DNA Repair, 2009, 8, 852-856.	2.8	5

#	Article	IF	CITATIONS
55	DNA polymerase switching: effects on spontaneous mutagenesis in <i>Escherichia coli</i> . Molecular Microbiology, 2009, 71, 315-331.	2.5	49
56	The active form of DNA polymerase V is UmuD′2C–RecA–ATP. Nature, 2009, 460, 359-363.	27.8	132
5 7	Xeroderma Pigmentosum-Variant Patients from America, Europe, and Asia. Journal of Investigative Dermatology, 2008, 128, 2055-2068.	0.7	76
58	On the mechanism of loading the PCNA sliding clamp by RFC. Molecular Microbiology, 2008, 68, 216-222.	2.5	44
59	Negligible impact of pol Î ¹ expression on the alkylation sensitivity of pol Î ² -deficient mouse fibroblast cells. DNA Repair, 2008, 7, 830-833.	2.8	8
60	Eukaryotic Y-family polymerases bypass a 3-methyl-2′-deoxyadenosine analog in vitro and methyl methanesulfonate-induced DNA damage in vivo. Nucleic Acids Research, 2008, 36, 2152-2162.	14.5	67
61	What a difference a decade makes: Insights into translesion DNA synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15591-15598.	7.1	338
62	Increased Catalytic Activity and Altered Fidelity of Human DNA Polymerase \hat{l}^1 in the Presence of Manganese. Journal of Biological Chemistry, 2007, 282, 24689-24696.	3.4	108
63	Evidence that in Xeroderma Pigmentosum Variant Cells, which Lack DNA Polymerase η, DNA Polymerase Î ¹ Causes the Very High Frequency and Unique Spectrum of UV-Induced Mutations. Cancer Research, 2007, 67, 3018-3026.	0.9	112
64	Molecular breeding of polymerases for amplification of ancient DNA. Nature Biotechnology, 2007, 25, 939-943.	17.5	115
65	Characterization of polVR391: a Y-family polymerase encoded by rumA'B from the IncJ conjugative transposon, R391. Molecular Microbiology, 2007, 63, 797-810.	2.5	23
66	Human DNA Polymerase η Promotes DNA Synthesis from Strand Invasion Intermediates of Homologous Recombination. Molecular Cell, 2006, 21, 445.	9.7	0
67	DNA polymerase \hat{l}^1 -dependent translesion replication of uracil containing cyclobutane pyrimidine dimers. DNA Repair, 2006, 5, 210-218.	2.8	27
68	Normal hypermutation in antibody genes from congenic mice defective for DNA polymerase \hat{I}^1 . DNA Repair, 2006, 5, 392-398.	2.8	35
69	RecA acts in trans to allow replication of damaged DNA by DNA polymerase V. Nature, 2006, 442, 883-887.	27.8	97
70	Controlling the subcellular localization of DNA polymerases \hat{l}^1 and \hat{l} via interactions with ubiquitin. EMBO Journal, 2006, 25, 2847-2855.	7.8	187
71	Novel thermostable Y-family polymerases: applications for the PCR amplification of damaged or ancient DNAs. Nucleic Acids Research, 2006, 34, 1102-1111.	14.5	45
72	Purification and Characterization of Escherichia coli DNA Polymerase V. Methods in Enzymology, 2006, 408, 378-390.	1.0	4

#	Article	IF	CITATIONS
73	Fidelity of Dpo4: effect of metal ions, nucleotide selection and pyrophosphorolysis. EMBO Journal, 2005, 24, 2957-2967.	7.8	170
74	MSH2–MSH6 stimulates DNA polymerase Î∙, suggesting a role for A:T mutations in antibody genes. Journal of Experimental Medicine, 2005, 201, 637-645.	8.5	175
75	The Relative Roles in Vivo of Saccharomyces cerevisiae Pol Î-, Pol ζ, Rev1 Protein and Pol32 in the Bypass and Mutation Induction of an Abasic Site, T-T (6-4) Photoadduct and T-T cis-syn Cyclobutane Dimer. Genetics, 2005, 169, 575-582.	2.9	166
76	DNA Polymerase V and RecA Protein, a Minimal Mutasome. Molecular Cell, 2005, 17, 561-572.	9.7	98
77	Human DNA Polymerase η Promotes DNA Synthesis from Strand Invasion Intermediates of Homologous Recombination. Molecular Cell, 2005, 20, 783-792.	9.7	287
78	Lyase activities intrinsic to Escherichia coli polymerases IV and V. DNA Repair, 2005, 4, 1368-1373.	2.8	11
79	Crystal structure of a benzo[a]pyrene diol epoxide adduct in a ternary complex with a DNA polymerase. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2265-2269.	7.1	176
80	Proliferating Cell Nuclear Antigen-dependent Coordination of the Biological Functions of Human DNA Polymerase Î ¹ . Journal of Biological Chemistry, 2004, 279, 48360-48368.	3.4	83
81	Investigating the Role of the Little Finger Domain of Y-family DNA Polymerases in Low Fidelity Synthesis and Translesion Replication. Journal of Biological Chemistry, 2004, 279, 32932-32940.	3.4	122
82	Generic expansion of the substrate spectrum of a DNA polymerase by directed evolution. Nature Biotechnology, 2004, 22, 755-759.	17.5	169
83	DNA Polymerases $\hat{I}\cdot$ and $\hat{I}^1.$ Advances in Protein Chemistry, 2004, 69, 205-228.	4.4	28
84	Switching from high-fidelity replicases to low-fidelity lesion-bypass polymerases. Current Opinion in Genetics and Development, 2004, 14, 113-119.	3.3	104
85	Snapshots of Replication through an Abasic Lesion. Molecular Cell, 2004, 13, 751-762.	9.7	186
86	Translesion DNA Polymerases, Eukaryotic. , 2004, , 247-250.		2
87	Replication of a cis–syn thymine dimer at atomic resolution. Nature, 2003, 424, 1083-1087.	27.8	212
88	Letter to the Editor DNA Repair - Volume 2, Issue 11. DNA Repair, 2003, 2, 1159-1160.	2.8	1
89	Sequence context-dependent replication of DNA templates containing UV-induced lesions by human DNA polymerase Î ¹ . DNA Repair, 2003, 2, 991-1006.	2.8	54
90	Localization of the Deoxyribose Phosphate Lyase Active Site in Human DNA Polymerase ι by Controlled Proteolysis. Journal of Biological Chemistry, 2003, 278, 29649-29654.	3.4	65

#	Article	IF	CITATIONS
91	Escherichia coli DNA Polymerase V Subunit Exchange. Journal of Biological Chemistry, 2003, 278, 52546-52550.	3.4	20
92	129-derived Strains of Mice Are Deficient in DNA Polymerase Î ¹ and Have Normal Immunoglobulin Hypermutation. Journal of Experimental Medicine, 2003, 198, 635-643.	8.5	169
93	Escherichia coli DNA Polymerase III Can Replicate Efficiently past a T-T cis-syn Cyclobutane Dimer if DNA Polymerase V and the 3′ to 5′ Exonuclease Proofreading Function Encoded by dnaQ Are Inactivated. Journal of Bacteriology, 2002, 184, 2674-2681.	2.2	39
94	Efficiency and Accuracy of SOS-induced DNA Polymerases Replicating Benzo[a]pyrene-7,8-diol 9,10-Epoxide A and G Adducts. Journal of Biological Chemistry, 2002, 277, 5265-5274.	3.4	105
95	Low Fidelity DNA Synthesis by a Y Family DNA Polymerase Due to Misalignment in the Active Site. Journal of Biological Chemistry, 2002, 277, 19633-19638.	3.4	103
96	Translesion replication of benzo[a]pyrene and benzo[c]phenanthrene diol epoxide adducts of deoxyadenosine and deoxyguanosine by human DNA polymerase iota. Nucleic Acids Research, 2002, 30, 5284-5292.	14.5	68
97	Two distinct modes of RecA action are required for DNA polymerase V-catalyzed translesion synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11061-11066.	7.1	51
98	Structure-based interpretation of missense mutations in Y-family DNA polymerases and their implications for polymerase function and lesion bypass. DNA Repair, 2002, 1, 343-358.	2.8	71
99	Sequence analysis and phenotypes of five temperature sensitive mutator alleles of dnaE, encoding modified α-catalytic subunits of Escherichia coli DNA polymerase III holoenzyme. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2002, 499, 85-95.	1.0	46
100	polî¹-dependent lesion bypass in vitro. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2002, 510, 9-22.	1.0	37
101	The ?tale? of UmuD and its role in SOS mutagenesis. BioEssays, 2002, 24, 141-148.	2.5	26
102	Replication restart in UV-irradiatedEscherichia coliinvolving pols II, III, V, PriA, RecA and RecFOR proteins. Molecular Microbiology, 2002, 43, 617-628.	2.5	93
103	Localization of DNA polymerases $\hat{I}\cdot$ and \hat{I}^1 to the replication machinery is tightly co-ordinated in human cells. EMBO Journal, 2002, 21, 6246-6256.	7.8	127
104	The Y-Family of DNA Polymerases. Molecular Cell, 2001, 8, 7-8.	9.7	798
105	5'-Deoxyribose Phosphate Lyase Activity of Human DNA Polymerase &igr in Vitro. Science, 2001, 291, 2156-2159.	12.6	187
106	Evolution of the two-step model for UV-mutagenesis. Mutation Research DNA Repair, 2001, 485, 83-92.	3.7	50
107	Crystal Structure of a Y-Family DNA Polymerase in Action. Cell, 2001, 107, 91-102.	28.9	588
108	Molecular Analysis of Antibiotic Resistance Gene Clusters in Vibrio cholerae O139 and O1 SXT Constins. Antimicrobial Agents and Chemotherapy, 2001, 45, 2991-3000.	3.2	300

#	Article	IF	CITATIONS
109	Unique misinsertion specificity of poliota may decrease the mutagenic potential of deaminated cytosines. EMBO Journal, 2001, 20, 6520-6529.	7.8	113
110	A model for SOS-lesion-targeted mutations in Escherichia coli. Nature, 2001, 409, 366-370.	27.8	114
111	Formation of Chromosomal Tandem Arrays of the SXT Element and R391, Two Conjugative Chromosomally Integrating Elements That Share an Attachment Site. Journal of Bacteriology, 2001, 183, 1124-1132.	2.2	92
112	Human DNA Polymerase Î ¹ Promiscuous Mismatch Extension. Journal of Biological Chemistry, 2001, 276, 30615-30622.	3.4	48
113	Eukaryotic DNA Polymerases: Proposal for a Revised Nomenclature. Journal of Biological Chemistry, 2001, 276, 43487-43490.	3.4	307
114	DNA polymerase iota and related Rad30–like enzymes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2001, 356, 53-60.	4.0	64
115	Roles of E. coli DNA polymerases IV and V in lesion-targeted and untargeted SOS mutagenesis. Nature, 2000, 404, 1014-1018.	27.8	415
116	Selective inhibition of RecA functions by the Hc1 nucleoid condensation protein fromChlamydia trachomatis. FEMS Microbiology Letters, 2000, 182, 279-283.	1.8	5
117	Identification of mucAB-like homologs on two IncT plasmids, R394 and Rts-1. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2000, 457, 1-13.	1.0	13
118	Subunit-specific degradation of the UmuD/D′ heterodimer by the ClpXP protease: the role of trans recognition in UmuD′ stability. EMBO Journal, 2000, 19, 5251-5258.	7.8	101
119	Misinsertion and bypass of thymine–thymine dimers by human DNA polymerase ι. EMBO Journal, 2000, 19, 5259-5266.	7.8	197
120	Intrinsic Polymerase Activities of UmuD′ 2 C and MucA′ 2 B Are Responsible for Their Different Mutagenic Properties during Bypass of a T-T cis-syn Cyclobutane Dimer. Journal of Bacteriology, 2000, 182, 2285-2291.	2.2	19
121	Visualization of two binding sites for the Escherichia coli UmuDâ€22C complex (DNA pol V) on RecA-ssDNA filaments. Journal of Molecular Biology, 2000, 297, 585-597.	4.2	37
122	Identification of additional genes belonging to the LexA regulon in <i>Escherichia coli</i> . Molecular Microbiology, 2000, 35, 1560-1572.	2.5	492
123	polî ¹ , a remarkably error-prone human DNA polymerase. Genes and Development, 2000, 14, 1642-1650.	5.9	271
124	Novel Human and Mouse Homologs of Saccharomyces cerevisiae DNA Polymerase Ε. Genomics, 1999, 60, 20-30.	2.9	183
125	Intermolecular cleavage by UmuD-like enzymes: identification of residues required for cleavage and substrate specificity 1 1Edited by A. Gottesman. Journal of Molecular Biology, 1999, 285, 2199-2209.	4.2	29
126	The Bacteriophage P1 HumD Protein Is a Functional Homolog of the Prokaryotic UmuD′-Like Proteins and Facilitates SOS Mutagenesis in <i>Escherichia coli</i> . Journal of Bacteriology, 1999, 181, 7005-7013.	2.2	16

#	Article	IF	CITATIONS
127	Genetic Analysis of the Mobilization and Leading Regions of the IncN plasmids pKM101 and pCU1. Journal of Bacteriology, 1999, 181, 2572-2583.	2.2	47
128	Unusual insertion element polymorphisms in the promoter and terminator regions of the mucAB-like genes of R471a and R446b. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1998, 397, 247-262.	1.0	34
129	Regulation of UmuD cleavage: role of the amino-terminal tail 1 1Edited by J. H. Miller. Journal of Molecular Biology, 1998, 282, 721-730.	4.2	19
130	Modulation of RecA Nucleoprotein Function by the Mutagenic UmuD′C Protein Complex. Journal of Biological Chemistry, 1998, 273, 32384-32387.	3.4	41
131	Novel <i>Escherichia coli umuD</i> ′ Mutants: Structure-Function Insights into SOS Mutagenesis. Journal of Bacteriology, 1998, 180, 4658-4666.	2.2	18
132	The <i>Bacillus subtilis</i> DinR Binding Site: Redefinition of the Consensus Sequence. Journal of Bacteriology, 1998, 180, 2201-2211.	2.2	84
133	Enhanced generation of A:T→T:A transversions in a recA730 lexA51(Def) mutant of Escherichia coli. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1997, 373, 61-66.	1.0	29
134	The <i>Saccharomyces cerevisiae RAD30</i> Gene, a Homologue of <i>Escherichia coli dinB</i> and <i>umuC</i> , Is DNA Damage Inducible and Functions in a Novel Error-Free Postreplication Repair Mechanism. Genetics, 1997, 147, 1557-1568.	2.9	305
135	Identification of a DinB/UmuC homolog in the archeon Sulfolobus solfataricus. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1996, 357, 245-253.	1.0	89
136	The UmuD′ protein filament and its potential role in damage induced mutagenesis. Structure, 1996, 4, 1401-1412.	3.3	46
137	Production and crystallization of a selenomethionyl variant of UmuD′, anEcherichia coliSOS response protein. Proteins: Structure, Function and Bioinformatics, 1996, 25, 506-509.	2.6	1
138	Structure of the UmuD′ protein and its regulation in response to DNA damage. Nature, 1996, 380, 727-730.	27.8	166
139	Purification of a Soluble UmuD′C Complex from Escherichia coli. Journal of Biological Chemistry, 1996, 271, 10767-10774.	3.4	105
140	Production and crystallization of a selenomethionyl variant of UmuD′, an Echerichia coli SOS response protein. Proteins: Structure, Function and Bioinformatics, 1996, 25, 506-509.	2.6	5
141	Analysis of recA mutants with altered SOS functions. Mutation Research DNA Repair, 1995, 336, 39-48.	3.7	52
142	Escherichia coli umuDC mutants: DNA sequence alterations and UmuD cleavage. Molecular Genetics and Genomics, 1992, 233, 443-448.	2.4	36
143	Mutagenesis induced by bacterial UmuDC proteins and their plasmid homologues. Molecular Microbiology, 1992, 6, 2213-2218.	2.5	101
144	Construction of a umuDC operon substitution mutation in Escherichia coli. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 1992, 281, 221-225.	1.1	113

9

#	Article	IF	CITATIONS
145	Mutagenic DNA repair in Escherichia coli, XX. Overproduction of UmuD′ protein results in suppression of the umuC36 mutation in excision defective bacteria. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1991, 250, 199-204.	1.0	15
146	Levels of chromosomally encoded Umu proteins and requirements for in vivo UmuD cleavage. Molecular Genetics and Genomics, 1991, 229, 10-16.	2.4	162
147	Induction and cleavage of Salmonella typhimurium UmuD protein. Molecular Genetics and Genomics, 1991, 229, 81-85.	2.4	23
148	The two-step model of bacterial UV mutagenesis. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1985, 150, 133-139.	1.0	85
149	The SOS Response. , 0, , 107-134.		43
150	Host cell RecA activates a mobile element-encoded mutagenic DNA polymerase. Nucleic Acids Research, 0, , .	14.5	3