
Sarah J Coulthurst

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2781720/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The ecological impact of a bacterial weapon: microbial interactions and the Type VI secretion system. FEMS Microbiology Reviews, 2021, 45, .	8.6	45
2	Type <scp>VI</scp> secretion system effector proteins: Effective weapons for bacterial competitiveness. Cellular Microbiology, 2020, 22, e13241.	2.1	93
3	Activation of a [NiFe]-hydrogenase-4 isoenzyme by maturation proteases. Microbiology (United) Tj ETQq1 1 0.78	4314 rgB1 1.8	/gverlock 1
4	The plant pathogen <i>Pectobacterium atrosepticum</i> contains a functional formate hydrogenlyaseâ€2 complex. Molecular Microbiology, 2019, 112, 1440-1452.	2.5	8
5	A New Front in Microbial Warfare—Delivery of Antifungal Effectors by the Type VI Secretion System. Journal of Fungi (Basel, Switzerland), 2019, 5, 50.	3.5	17
6	A family of Type VI secretion system effector proteins that form ion-selective pores. Nature Communications, 2019, 10, 5484.	12.8	57
7	The Type VI secretion system: a versatile bacterial weapon. Microbiology (United Kingdom), 2019, 165, 503-515.	1.8	216
8	Dual Role for DsbA in Attacking and Targeted Bacterial Cells during Type VI Secretion System-Mediated Competition. Cell Reports, 2018, 22, 774-785.	6.4	31
9	Killing with proficiency: Integrated post-translational regulation of an offensive Type VI secretion system. PLoS Pathogens, 2018, 14, e1007230.	4.7	30
10	The type VI secretion system deploys antifungal effectors against microbial competitors. Nature Microbiology, 2018, 3, 920-931.	13.3	199
11	Quantitative Determination of Anti-bacterial Activity During Bacterial Co-culture. Methods in Molecular Biology, 2017, 1615, 517-524.	0.9	2
12	VgrG and PAAR Proteins Define Distinct Versions of a Functional Type VI Secretion System. PLoS Pathogens, 2016, 12, e1005735.	4.7	184
13	Aim, Load, Fire: The Type VI Secretion System, a Bacterial Nanoweapon. Trends in Microbiology, 2016, 24, 51-62.	7.7	366
14	Molecular weaponry: diverse effectors delivered by the Type VI secretion system. Cellular Microbiology, 2015, 17, 1742-1751.	2.1	150
15	Intraspecies Competition in Serratia marcescens Is Mediated by Type VI-Secreted Rhs Effectors and a Conserved Effector-Associated Accessory Protein. Journal of Bacteriology, 2015, 197, 2350-2360.	2.2	165
16	A Snapshot of the Extraordinary World of Social Microbiology. Journal of Molecular Biology, 2015, 427, 3625-3627.	4.2	0
17	Visualization of the Serratia Type VI Secretion System Reveals Unprovoked Attacks and Dynamic Assembly. Cell Reports, 2015, 12, 2131-2142.	6.4	63
18	Biochemical analysis of TssK, a core component of the bacterial TypeÂVI secretion system, reveals distinct oligomeric states of TssK and identifies a TssK–TssFG subcomplex. Biochemical Journal, 2014, 461, 291-304.	3.7	53

#	Article	IF	CITATIONS
19	Communication, Cooperation, and Social Interactions: a Report from the Third Young Microbiologists Symposium on Microbe Signalling, Organisation, and Pathogenesis. Journal of Bacteriology, 2014, 196, 3527-3533.	2.2	2
20	Genome Evolution and Plasticity of Serratia marcescens, an Important Multidrug-Resistant Nosocomial Pathogen. Genome Biology and Evolution, 2014, 6, 2096-2110.	2.5	155
21	A holin and an endopeptidase are essential for chitinolytic protein secretion in <i>Serratia marcescens</i> . Journal of Cell Biology, 2014, 207, 615-626.	5.2	47
22	Role of the phosphopantetheinyltransferase enzyme, PswP, in the biosynthesis of antimicrobial secondary metabolites by Serratia marcescens Db10. Microbiology (United Kingdom), 2014, 160, 1609-1617.	1.8	20
23	Signal peptide etiquette during assembly of a complex respiratory enzyme. Molecular Microbiology, 2013, 90, 400-414.	2.5	27
24	The Type VI secretion system – a widespread and versatile cell targeting system. Research in Microbiology, 2013, 164, 640-654.	2.1	177
25	Proteomic Identification of Novel Secreted Antibacterial Toxins of the Serratia marcescens Type VI Secretion System. Molecular and Cellular Proteomics, 2013, 12, 2735-2749.	3.8	81
26	A synthetic system for expression of components of a bacterial microcompartment. Microbiology (United Kingdom), 2013, 159, 2427-2436.	1.8	26
27	Structural basis for type VI secreted peptidoglycan <scp>DL</scp> -endopeptidase function, specificity and neutralization in <i>Serratia marcescens</i> . Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 2468-2482.	2.5	37
28	The Insect Pathogen Serratia marcescens Db10 Uses a Hybrid Non-Ribosomal Peptide Synthetase-Polyketide Synthase to Produce the Antibiotic Althiomycin. PLoS ONE, 2012, 7, e44673.	2.5	54
29	New secreted toxins and immunity proteins encoded within the <scp>T</scp> ype <scp>VI</scp> secretion system gene cluster of <i><scp>S</scp>erratia marcescens</i> . Molecular Microbiology, 2012, 86, 921-936.	2.5	121
30	The archetype <i><scp>P</scp>seudomonas aeruginosa</i> proteins <scp><scp>TssB</scp></scp> and <scp><scp>Tagl</scp></scp> form a novel subcomplex in the bacterial type <scp>VI</scp> secretion system. Molecular Microbiology, 2012, 86, 437-456.	2.5	22
31	Conserved Signal Peptide Recognition Systems across the Prokaryotic Domains. Biochemistry, 2012, 51, 1678-1686.	2.5	25
32	A multiâ€repeat adhesin of the phytopathogen, <i>Pectobacterium atrosepticum</i> , is secreted by a Type I pathway and is subject to complex regulation involving a nonâ€canonical diguanylate cyclase. Molecular Microbiology, 2011, 82, 719-733.	2.5	64
33	N-Acetylglucosamine-dependent biofilm formation in Pectobacterium atrosepticum is cryptic and activated by elevated c-di-GMP levels. Microbiology (United Kingdom), 2011, 157, 3340-3348.	1.8	47
34	Stable-isotope labeling with amino acids in nematodes. Nature Methods, 2011, 8, 849-851.	19.0	108
35	The structure of <i>Serratia marcescens</i> Lip, a membrane-bound component of the type VI secretion system. Acta Crystallographica Section D: Biological Crystallography, 2011, 67, 1065-1072.	2.5	27
36	The Opportunistic Pathogen Serratia marcescens Utilizes Type VI Secretion To Target Bacterial Competitors. Journal of Bacteriology, 2011, 193, 6057-6069.	2.2	203

SARAH J COULTHURST

#	Article	IF	CITATIONS
37	Two mobile <i>Pectobacterium atrosepticum</i> prophages modulate virulence. FEMS Microbiology Letters, 2010, 304, 195-202.	1.8	29
38	Remnant signal peptides on non-exported enzymes: implications for the evolution of prokaryotic respiratory chains. Microbiology (United Kingdom), 2009, 155, 3992-4004.	1.8	36
39	Quorum Sensing Coordinates Brute Force and Stealth Modes of Infection in the Plant Pathogen Pectobacterium atrosepticum. PLoS Pathogens, 2008, 4, e1000093.	4.7	216
40	A new way out: protein localization on the bacterial cell surface via Tat and a novel Type II secretion system. Molecular Microbiology, 2008, 69, 1331-1335.	2.5	6
41	DsbA Plays a Critical and Multifaceted Role in the Production of Secreted Virulence Factors by the Phytopathogen Erwinia carotovora subsp. atroseptica. Journal of Biological Chemistry, 2008, 283, 23739-23753.	3.4	48
42	Quorum sensing, virulence and secondary metabolite production in plant soft-rotting bacteria. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 1165-1183.	4.0	140
43	Quorum sensing has an unexpected role in virulence in the model pathogen Citrobacter rodentium. EMBO Reports, 2007, 8, 698-703.	4.5	32
44	Genetic and proteomic analysis of the role of luxS in the enteric phytopathogen, Erwinia carotovora. Molecular Plant Pathology, 2006, 7, 31-45.	4.2	57
45	Metabolic and regulatory engineering of Serratia marcescens: mimicking phage-mediated horizontal acquisition of antibiotic biosynthesis and quorum-sensing capacities. Microbiology (United Kingdom), 2006, 152, 1899-1911.	1.8	79
46	Structure–activity relationships of Erwinia carotovora quorum sensing signaling molecules. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 4235-4238.	2.2	37
47	Regulation and biosynthesis of carbapenem antibiotics in bacteria. Nature Reviews Microbiology, 2005, 3, 295-306.	28.6	135
48	luxS mutants of Serratia defective in autoinducer-2-dependent â€~quorum sensing' show strain-dependent impacts on virulence and production of carbapenem and prodigiosin. Microbiology (United Kingdom), 2004, 150, 1901-1910.	1.8	91
49	Can boron get bacteria talking?. Trends in Biochemical Sciences, 2002, 27, 217-219.	7.5	25
50	The regulation of virulence in phytopathogenic Erwinia species: quorum sensing, antibiotics and ecological considerations. Antonie Van Leeuwenhoek, 2002, 81, 223-231.	1.7	110
51	Quorum Sensing in the Soft-Rot Erwinias. , 0, , 185-199.		1