Jaehak Jeong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2781614/publications.pdf

Version: 2024-02-01

		623734	552781
29	697	14	26
papers	citations	h-index	g-index
31	31	31	874
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	EPIC and APEX: Model Use, Calibration, and Validation. Transactions of the ASABE, 2012, 55, 1447-1462.	1.1	179
2	Impact of Climate Change on Streamflow Hydrology in Headwater Catchments of the Upper Blue Nile Basin, Ethiopia. Water (Switzerland), 2018, 10, 120.	2.7	84
3	Evaluating the Impact of Low Impact Development (LID) Practices on Water Quantity and Quality under Different Development Designs Using SWAT. Water (Switzerland), 2017, 9, 193.	2.7	47
4	A new framework for modeling decentralized low impact developments using Soil and Water Assessment Tool. Environmental Modelling and Software, 2017, 96, 305-322.	4.5	35
5	Hydrologic Modeling of a Canal-Irrigated Agricultural Watershed with Irrigation Best Management Practices: Case Study. Journal of Hydrologic Engineering - ASCE, 2011, 16, 746-757.	1.9	31
6	Simulating the Effects of Agricultural Management on Water Quality Dynamics in Rice Paddies for Sustainable Rice Production—Model Development and Validation. Water (Switzerland), 2017, 9, 869.	2.7	29
7	Implications of spatial and temporal variations in effects of conservation practices on water management strategies. Agricultural Water Management, 2017, 180, 252-266.	5.6	27
8	Evaluating carbon sequestration for conservation agriculture and tillage systems in Cambodia using the EPIC model. Agriculture, Ecosystems and Environment, 2018, 251, 37-47.	5.3	24
9	Alternative cropping systems for groundwater irrigation sustainability in the North China Plain. Agricultural Water Management, 2021, 250, 106867.	5.6	23
10	Modeling Sedimentation-Filtration Basins for Urban Watersheds Using Soil and Water Assessment Tool. Journal of Environmental Engineering, ASCE, 2013, 139, 838-848.	1.4	21
11	Assessment of Optional Sediment Transport Functions via the Complex Watershed Simulation Model SWAT. Water (Switzerland), 2017, 9, 76.	2.7	20
12	Estimation of Stream Health Using Flow-Based Indices. Hydrology, 2018, 5, 20.	3.0	18
13	Linking watershed modeling and bacterial source tracking to better assess E. coli sources. Science of the Total Environment, 2019, 648, 164-175.	8.0	17
14	Agricultural Policy Environmental eXtender (APEX) Simulation of Spring Peanut Management in the North China Plain. Agronomy, 2019, 9, 443.	3.0	16
15	Development of SWAT-Paddy for Simulating Lowland Paddy Fields. Sustainability, 2018, 10, 3246.	3.2	15
16	Multi-Dimensional Evaluation of Simulated Small-Scale Irrigation Intervention: A Case Study in Dimbasinia Watershed, Ghana. Sustainability, 2018, 10, 1531.	3.2	14
17	Evaluation of the performance of the EPIC model for yield and biomass simulation under conservation systems in Cambodia. Agricultural Systems, 2018, 166, 90-100.	6.1	14
18	Implications of Conceptual Channel Representation on <scp>SWAT</scp> Streamflow and Sediment Modeling. Journal of the American Water Resources Association, 2017, 53, 725-747.	2.4	13

#	Article	IF	CITATIONS
19	Development of Algorithms for Modeling Onsite Wastewater Systems within SWAT. Transactions of the ASABE, 2011, 54, 1693-1704.	1.1	12
20	The Variable Saturation Hydraulic Conductivity Method for Improving Soil Water Content Simulation in EPIC and APEX Models. Vadose Zone Journal, 2017, 16, 1-14.	2.2	9
21	Enhancement of Agricultural Policy/Environment eXtender Model (APEX) Model to Assess Effectiveness of Wetland Water Quality Functions. Water (Switzerland), 2019, 11, 606.	2.7	8
22	Evaluation of Long-Term SOC and Crop Productivity within Conservation Systems Using GFDL CM2.1 and EPIC. Sustainability, 2018, 10, 2665.	3.2	7
23	Development, growth, and biomass simulations of two common wetland tree species in Texas. Environmental Monitoring and Assessment, 2018, 190, 521.	2.7	6
24	Model Application for Sustainable Agricultural Water Use. Agronomy, 2020, 10, 396.	3.0	6
25	Improved hydrological modeling with APEX and EPIC: Model description, testing, and assessment of bioenergy producing landscape scenarios. Environmental Modelling and Software, 2021, 143, 105111.	4.5	6
26	The impact of rainfall distribution methods on streamflow throughout multiple elevations in the rocky mountains using the APEX modelâ€"price river watershed, utah. Journal of Environmental Quality, 2021, 50, 1395-1407.	2.0	5
27	Relationship of Attributes of Soil and Topography with Land Cover Change in the Rift Valley Basin of Ethiopia. Remote Sensing, 2022, 14, 3257.	4.0	5
28	Simulating salinity transport in High-Desert landscapes using APEX-MODFLOW-Salt. Journal of Hydrology, 2022, 610, 127873.	5.4	4
29	Fate and transport in environmental quality. Journal of Environmental Quality, 2021, 50, 1282-1289.	2.0	O