List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2780586/publications.pdf Version: 2024-02-01

	279798	289244
1,918	23	40
citations	h-index	g-index
128	128	2330
docs citations	times ranked	citing authors
	citations 128	1,91823citationsh-index128128

#	Article	lF	CITATIONS
1	The database of the <scp>PREDICTS</scp> (Projecting Responses of Ecological Diversity In Changing) Tj ETQq1	1 0.7843 1.9	14 rgBT /Ove
2	Title is missing!. Biodiversity and Conservation, 2000, 9, 1707-1721.	2.6	114
3	Grazing promotes dung beetle diversity in the xeric landscape of a Mexican Biosphere Reserve. Biological Conservation, 2007, 140, 308-317.	4.1	94
4	Low doses of ivermectin cause sensory and locomotor disorders in dung beetles. Scientific Reports, 2015, 5, 13912.	3.3	89
5	lvermectin residues disrupt dung beetle diversity, soil properties and ecosystem functioning: An interdisciplinary field study. Science of the Total Environment, 2018, 618, 219-228.	8.0	80
6	Thermoregulation in endothermic dung beetles (Coleoptera: Scarabaeidae): Effect of body size and ecophysiological constraints in flight. Journal of Insect Physiology, 2006, 52, 854-860.	2.0	79
7	Species richness in Mediterranean agroecosystems: Spatial and temporal analysis for biodiversity conservation. Biological Conservation, 2007, 134, 113-121.	4.1	77
8	Environmental and geographical factors affecting the Iberian distribution of flightless Jekelius species (Coleoptera: Geotrupidae). Diversity and Distributions, 2006, 12, 179-188.	4.1	57
9	Behavioural and morphological adaptations for a low-quality resource in semi-arid environments: dung beetles (Coleoptera, Scarabaeoidea) associated with the European rabbit (Oryctolagus) Tj ETQq1 1 0.784	3140r.gBT /	Ovødock 10
10	Effect of landscape structure on the spatial distribution of Mediterranean dung beetle diversity. Diversity and Distributions, 2009, 15, 489-501.	4.1	51
11	Phyllostomid bat diversity in a variegated coffee landscape. Biological Conservation, 2005, 122, 151-158.	4.1	44
12	Climatic stress, food availability and human activity as determinants of endemism patterns in the Mediterranean region: the case of dung beetles (Coleoptera, Scarabaeoidea) in the Iberian Peninsula. Diversity and Distributions, 2002, 8, 259-274.	4.1	43
13	The influence of landscape structure on ants and dung beetles diversity in a Mediterranean savanna—Forest ecosystem. Ecological Indicators, 2011, 11, 831-839.	6.3	40
14	Evidence of Different Thermoregulatory Mechanisms between Two Sympatric Scarabaeus Species Using Infrared Thermography and Micro-Computer Tomography. PLoS ONE, 2012, 7, e33914.	2.5	40
15	Acorn removal and dispersal by the dung beetle <i>Thorectes lusitanicus</i> : ecological implications. Ecological Entomology, 2007, 32, 349-356.	2.2	36
16	Dung Beetles Eat Acorns to Increase Their Ovarian Development and Thermal Tolerance. PLoS ONE, 2010, 5, e10114.	2.5	35
17	Phylogenetic analysis of Geotrupidae (Coleoptera, Scarabaeoidea) based on larvae. Systematic Entomology, 2004, 29, 509-523.	3.9	33
18	Roles of endothermy in niche differentiation for ballâ€rolling dung beetles (Coleoptera: Scarabaeidae) along an altitudinal gradient. Ecological Entomology, 2007, 32, 544-551.	2.2	32

#	Article	IF	CITATIONS
19	Effects of the progressive abandonment of grazing on dung beetle biodiversity: body size matters. Biodiversity and Conservation, 2018, 27, 189-204.	2.6	30

Thermoregulatory strategies in two closely related sympatric Scarabaeus species (Coleoptera:) Tj ETQq000 rgBT /Overlock 10 Tf 50 702 1.5

21	Current protected sites do not allow the representation of endangered invertebrates: the Spanish case. Insect Conservation and Diversity, 2012, 5, 414-421.	3.0	28
22	Grazing abandonment and dung beetle assemblage composition: Reproductive behaviour has something to say. Ecological Indicators, 2019, 96, 361-367.	6.3	27
23	Influence of land use on the trophic niche overlap of dung beetles in the semideciduous Atlantic forest of Argentina. Insect Conservation and Diversity, 2018, 11, 554-564.	3.0	26
24	Effects of grazing intensity and the use of veterinary medical products on dung beetle biodiversity in the sub-mountainous landscape of Central Italy. PeerJ, 2017, 5, e2780.	2.0	26
25	Taxonomic diversity as complementary information to assess plant species diversity in secondary vegetation and primary tropical deciduous forest. Journal of Vegetation Science, 2009, 20, 935-943.	2.2	25
26	Comparative thermoregulation between different species of dung beetles (Coleoptera: Geotrupinae). Journal of Thermal Biology, 2018, 74, 84-91.	2.5	25
27	Thermal niche helps to explain the ability of dung beetles to exploit disturbed habitats. Scientific Reports, 2020, 10, 13364.	3.3	25
28	The Comparative Effectiveness of Rodents and Dung Beetles as Local Seed Dispersers in Mediterranean Oak Forests. PLoS ONE, 2013, 8, e77197.	2.5	24
29	A protocol for analysing thermal stress in insects using infrared thermography. Journal of Thermal Biology, 2016, 56, 113-121.	2.5	24
30	Community level patterns in diverse systems: A case study of litter fauna in a Mexican pine-oak forest using higher taxa surrogates and re-sampling methods. Acta Oecologica, 2008, 33, 73-84.	1.1	23
31	Ancient origin of endemic Iberian earth-boring dung beetles (Geotrupidae). Molecular Phylogenetics and Evolution, 2011, 59, 578-586.	2.7	23
32	Acorn preference by the dung beetle, Thorectes lusitanicus, under laboratory and field conditions. Animal Behaviour, 2007, 74, 1697-1704.	1.9	22
33	BIOGEOGRAPHICAL ANALYSIS OF SCARABAEINAE AND GEOTRUPINAE ALONG A TRANSECT IN CENTRAL MEXICO (COLEOPTERA, SCARABAEOIDEA). Fragmenta Entomologica, 2008, 40, 273.	0.4	21
34	Relationship between land uses and diversity of dung beetles (Coleoptera: Scarabaeinae) in the southern Atlantic forest of Argentina: which are the key factors?. Biodiversity and Conservation, 2018, 27, 3201-3213.	2.6	21
35	Dung beetles: functional identity, not functional diversity, accounts for ecological process disruption caused by the use of veterinary medical products. Journal of Insect Conservation, 2020, 24, 643-654.	1.4	20
36	Culturable aerobic and facultative bacteria from the gut of the polyphagic dung beetle <i>Thorectes lusitanicus</i> . Insect Science, 2015, 22, 178-190.	3.0	17

#	Article	IF	CITATIONS
37	Comparing Dung Beetle Species Assemblages Between Protected Areas and Adjacent Pasturelands in a Mediterranean Savanna Landscape. Rangeland Ecology and Management, 2012, 65, 137-143.	2.3	16
38	Evaluating longâ€ŧerm ivermectin use and the role of dung beetles in reducing shortâ€ŧerm CH ₄ and CO ₂ emissions from livestock faeces: a mesocosm design under Mediterranean conditions. Ecological Entomology, 2020, 45, 109-120.	2.2	15
39	First assessment of the comparative toxicity of ivermectin and moxidectin in adult dung beetles: Sub-lethal symptoms and pre-lethal consequences. Scientific Reports, 2018, 8, 14885.	3.3	14
40	Isolation and determination of ivermectin in post-mortem and in vivo tissues of dung beetles using a continuous solid phase extraction method followed by LC-ESI+-MS/MS. PLoS ONE, 2017, 12, e0172202.	2.5	14
41	Diversity of Dung Beetles in Mediterranean Wetlands and Bordering Brushwood. Annals of the Entomological Society of America, 1998, 91, 298-302.	2.5	12
42	Scaling local abundance determinants in mediterranean dung beetles. Insect Conservation and Diversity, 2012, 5, 106-117.	3.0	12
43	Dung beetle trophic ecology: are we misunderstanding resources attraction?. Ecological Entomology, 2021, 46, 552-561.	2.2	12
44	Biomagnification and body distribution of ivermectin in dung beetles. Scientific Reports, 2020, 10, 9073.	3.3	11
45	Dung Beetle Assemblages Attracted to Cow and Horse Dung: The Importance of Mouthpart Traits, Body Size, and Nesting Behavior in the Community Assembly Process. Life, 2021, 11, 873.	2.4	11
46	Functional responses to anthropogenic disturbance and the importance of selected traits: A study case using dung beetles. Ecological Entomology, 2022, 47, 503-514.	2.2	11
47	Interactions between rabbits and dung beetles influence the establishment of Erodium praecox. Journal of Arid Environments, 2009, 73, 713-718.	2.4	10
48	Behavioral and antennal electrophysiological responses of a predator ant to the pygidial gland secretions of two species of Neotropical dung roller beetles. Chemoecology, 2012, 22, 29-38.	1.1	10
49	Chemical diversity and potential biological functions of the pygidial gland secretions in two species of Neotropical dung roller beetles. Chemoecology, 2015, 25, 201-213.	1.1	10
50	Acorn Consumption Improves the Immune Response of the Dung Beetle Thorectes lusitanicus. PLoS ONE, 2013, 8, e69277.	2.5	9
51	Larval morphology of some Anisopliini grain beetles with a key to their larvae (Coleoptera:) Tj ETQq1 1 0.784314	rg <u>BT</u> /Ove	erlyck 10 Tf 5
52	Effect of wetland management: are lentic wetlands refuges of plant-species diversity in the Andean–Orinoco Piedmont of Colombia?. PeerJ, 2016, 4, e2267.	2.0	9
53	Chill tolerance variability within and among populations in the dung beetle Canthon humectus hidalgoensis along an altitudinal gradient in the mexican semiarid high plateau. Journal of Arid Environments, 2011, 75, 119-124.	2.4	8
54	Thermal tolerance and recovery behaviour of <i>Thorectes lusitanicus</i> (<scp>C</scp> oleoptera,) Tj ETQq0 0	0 rgBT /Ov	erlock 10 Tf !

4

#	Article	IF	CITATIONS
55	Thermoregulatory syndromes of two sympatric dung beetles with low energy costs. Journal of Insect Physiology, 2019, 118, 103945.	2.0	8
56	Acorn preference under field and laboratory conditions by two flightless Iberian dung beetle species (Thorectes baraudi and Jekelius nitidus): implications for recruitment and management of oak forests in central Spain. Ecological Entomology, 2011, 36, 104-110.	2.2	7
57	Extinction trends of threatened invertebrates in peninsular Spain. Journal of Insect Conservation, 2013, 17, 235-244.	1.4	7
58	The classification and phylogenetic status of Jekelius (Reitterius) punctulatus (Jekel, 1866) and Jekelius (Jekelius) brullei (Jekel, 1866) (Coleoptera: Geotrupidae) using molecular data . Zootaxa, 2015, 4040, 187.	0.5	7
59	The value of small, natural and manâ€made wetlands for bird diversity in the east Colombian Piedmont. Aquatic Conservation: Marine and Freshwater Ecosystems, 2018, 28, 87-97.	2.0	7
60	Historical and ecological determinants of dung beetle assemblages in two arid zones of central Mexico. Journal of Arid Environments, 2012, 76, 54-60.	2.4	6
61	Identification and evaluation of semiochemicals for the biological control of the beetle Omorgus suberosus (F.) (Coleoptera: Trogidae), a facultative predator of eggs of the sea turtle Lepidochelys olivacea (Eschscholtz). PLoS ONE, 2017, 12, e0172015.	2.5	6
62	Use of Quercus Acorns and Leaf Litter by North African Thorectes Species (Coleoptera: Scarabaeoidea:) Tj ETQ	q0 0 0 rgBT	/Oyerlock 10
63	Larval Morphology and Breeding Behavior of the Genus <i>Pedaridium</i> Harold (Coleoptera:) Tj ETQq1 1 0.7	84314.rgBT 2.5	Öyerlock 10
64	BIOLOGY OF <i>APHODIUS HYXOS</i> PETROVITZ (COLEOPTERA: SCARABAEOIDEA: APHODIIDAE) AND DESCRIPTION OF THE THIRD LARVAL STAGE. Canadian Entomologist, 1997, 129, 657-665.	0.8	4
65	First observation on the predation of a non-arthropod species by a dung beetle species: The case of Canthon chalybaeus and the snail Bulimulus apodemetes. PLoS ONE, 2021, 16, e0258396.	2.5	4
66	Using local autocorrelation analysis to identify conservation areas: an example considering threatened invertebrate species in Spain. Biodiversity and Conservation, 2012, 21, 2127-2137.	2.6	3
67	Differential ecophysiological syndromes explain the partition of the thermal niche resource in coexisting Eucraniini dung beetles. Ecological Entomology, 2022, 47, 689-702.	2.2	3
68	A New Species ofGlaresisErichson from the Iberian Peninsula (Scarabaeoidea: Glaresidae). The Coleopterists Bulletin, 2001, 55, 272-278.	0.2	2
69	Intraâ€population variation and geographic correlation in <i>Canthon humectus hidalgoensis</i> using FTIRâ€ATR spectroscopy. Ecological Research, 2014, 29, 1105-1113.	1.5	2
70	Larval morphology and biology of two species of Aphodius (Plagiogonus) from the Iberian Peninsula (Coleoptera: Scarabaeidae: Aphodiinae). European Journal of Entomology, 2000, 97, 395-401.	1.2	2
71	Effects of restoration and management of Mediterranean traditional water systems on Odonata alpha diversity: a long-term monitoring survey. Biodiversity and Conservation, 2022, 31, 227-243.	2.6	2
72	Case 3699ThorectesMulsant, 1842 (Insecta, Coleoptera, scarabaeoidea): proposed conservation of usage. Bulletin of Zoological Nomenclature, 2015, 72, 291-296.	0.1	1

#	Article	IF	CITATIONS
73	Freshwater fish's spatial patterns in isolated water springs in North-eastern Mexico. Revista De Biologia Tropical, 2010, 58, 413-26.	0.4	1
74	Nesting behaviour of Canthon unicolor and C. histrio: a new subsocial nesting variation in dung beetles (Coleoptera: Scarabaeidae: Deltochilini). Journal of Natural History, 2021, 55, 2187-2197.	0.5	1
75	Dung beetles can eat acorns to increase their fitness. Nature Precedings, 2009, , .	0.1	Ο

A new Neotropical genus of the Eupariini-Psammodiini complex with comparative morphology of mouthparts structures and analysis of characters among related taxa (Coleoptera: Scarabaeidae:) Tj ETQq0 0 0 rgBD/Dverloca 10 Tf 50 76